Pair of Tangent: Definition, Equation and Formula

Pair of Tangent: Definition, Equation and Formula

Komal MiglaniUpdated on 02 Jul 2025, 07:32 PM IST

In geometry, a circle is a fundamental shape defined as the locus of all points that are equidistant from a fixed point, known as the center. One interesting property of circles is the concept of tangents — lines that touch the circle at exactly one point. A special case arises when dealing with tangents drawn from a point outside the circle. The study of these tangents provides insights into various geometric properties and relationships.

Pair of Tangent: Definition, Equation and Formula
Pair of Tangent: Definition, Equation and Formula

Pair of Tangent

A tangent to a circle is a straight line that touches the circle at exactly one point. This point of contact is known as the point of tangency. The tangent is perpendicular to the radius of the circle at the point of contact. For a given point P(x1,y1) outside a circle, there are typically two distinct tangents that can be drawn to the circle. These tangents are crucial in various geometric constructions and proofs.

If the line L touches the circle, then Equation (iii) will have two equal real roots

So, Discriminant of equation (iii) = 0

$\begin{aligned} & \mathrm{B}^2-4 \mathrm{AC}=0 \\ & 4 \mathrm{~m}^2 \mathrm{c}^2-4\left(1+\mathrm{m}^2\right)\left(\mathrm{c}^2-\mathrm{a}^2\right)=0 \\ & \mathrm{a}^2=\frac{\mathrm{c}^2}{1+\mathrm{m}^2} \\ & c^2=a^2\left(1+m^2\right)\end{aligned}$

In this case, the line is a tangent to the circle

This is also the condition of tangency to the circle.

Equation of the Tangent in Point Form

Point Form

The equation of the tangent to a circle $x^2+y^2+2 g x+2 f y+c=0$ at the point $P\left(x_1 \cdot y_1\right)$ is $x_1+y y_1+g\left(x+x_1\right)+f\left(y+y_1\right)+c=0$
Proof:
$\mathrm{C}(-\mathrm{g},-\mathrm{f})$ is the centre of the circle
As point $\mathrm{P}\left(x_1, y_1\right)$ lies on the circle.
$\therefore \quad$ Slope of $\mathrm{CP}=\frac{\mathrm{y}_1-(-\mathrm{f})}{\mathrm{x}_1-(-\mathrm{g})}=\frac{\mathrm{y}_1+\mathrm{f}}{\mathrm{x}_1+\mathrm{g}}$
Here, PT is the perpendicular to CP.
Thus, $\quad$ slope of $\mathrm{PT}=-\left(\frac{\mathrm{x}_1+\mathrm{g}}{\mathrm{y}_1+\mathrm{f}}\right)$
Hence, the equation of the tangent at $\mathrm{P}\left(x_1, y_1\right)$ is

$
\begin{gathered}
\left(y-y_1\right)=-\left(\frac{x_1+g}{y_1+f}\right)\left(x-x_1\right) \\
\Rightarrow \quad\left(y-y_1\right)\left(y_1+f\right)+\left(x_1+g\right)\left(x-x_1\right)=0 \\
\Rightarrow \quad x_1+y_1+g x+f y=x_1^2+y_1^2+g x_1+\mathrm{yy}_1
\end{gathered}
$

now add $\mathrm{gx}_1+\mathrm{fy}_1+\mathrm{c}$ both side, we get

$
\Rightarrow \quad \mathrm{xx}_1+\mathrm{yy}_1+\mathrm{g}\left(\mathrm{x}+\mathrm{x}_1\right)+\mathrm{f}\left(\mathrm{y}+\mathrm{y}_1\right)+\mathrm{c}=\mathrm{x}_1^2+\mathrm{y}_1^2+2 g \mathrm{x}_1+2 \mathrm{yy}_1+\mathrm{c}
$

i.e. $\quad x_1+y_1+g\left(x+x_1\right)+f\left(y+y_1\right)+c=0$
(As, point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ lies on the circle so, $\mathrm{x}_1^2+\mathrm{y}_1^2+2 g \mathrm{x}_1+2 f \mathrm{y}_1+\mathrm{c}=0$ )

NOTE:

In order to find out the equation of a tangent to any 2nd-degree curve, the following points must be kept in mind:

$x_1^2$ is replaced by $x x_1$
$y^2$ is replaced by $y y_1$
$x y$ is replaced by $\frac{x y_1+x_1 y}{2}$ $x$ is replaced by $\frac{x+x_1}{2}$ $y$ is replaced by $\frac{y+y_1}{2}$
and c vill remain $c$.
This method is applicable only for a 2nd-degree conic.
Pair of Tangent:
The combined equation of the pair of tangents drawn from $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ to the circle $\mathrm{S}: \mathrm{x}^2+\mathrm{y}^2=\mathrm{a}^2$ is

$
\left(x^2+y^2-a^2\right)\left(x_1^2+y_1^2-a^2\right)=\left(x x_1+y y_1-a^2\right)^2 \quad \text { or } \quad S S_1=T^2
$

Where,

$
\begin{aligned}
& S \equiv x^2+y^2-a^2 \\
& S_1 \equiv x_1^2+y_1^2-a^2 \\
& T \equiv x x_1+y y_1-a^2
\end{aligned}
$

The combined equation of a pair of tangents drawn from $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ to a circle $x^2+y^2+2 g x+2 f y+c=0$ is

$
\begin{aligned}
& \quad S S_1=T^2 \\
& \text { where } \\
& \qquad S \equiv x^2+y^2+2 g x+2 f y+c \\
& S_1 \equiv x_1^2+y_1^2+2 g x_1+2 f y_1+c \\
& T \equiv x x_1+y y_1+g\left(x+x_1\right)+f\left(y+y_1\right)+c
\end{aligned}
$

Recommended Video Based on Pair of Tangent


Solved Examples Based on Pair of Tangent

Example 1: The area of the triangle formed by the pair of tangents from $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ to the circle $\mathrm{x}^2+\mathrm{y}^2=\mathrm{a}^2$ and the chord joining their points of contact with the circle is $\mathrm{k}\left(\mathrm{x}_1^2+\mathrm{y}_1^2-\mathrm{a}^2\right)^{3 / 2}\left(\mathrm{x}_1^2+y_1^2\right)^{-1}$ sq. units where $\mathrm{k}=$
1) $2 a$
2) $\frac{a}{2}$
3) $a$
4) 2

Solution
Let $R\left(x_1, y_1\right)$ be the point from which are drawn the tangents $R P$ and $R Q$ to the circle $2 k\left(x_1^2+y_1^2-a^2\right)^{3 / 2}\left(x_1^2+y_1^2\right)^{-1}$ sq. units.
Let $O R$ meet $P Q$ at $L$, where $O(0,0)$ is the centre of the circle.

$
\begin{aligned}
& \text { Then } \triangle \mathrm{RPQ}=2 \Delta \mathrm{RLP}=2[\Delta \mathrm{OPR}-\Delta \mathrm{OLP}] \\
&\begin{aligned}
\Delta \mathrm{OPR}=1 / 2 \mathrm{OP} \cdot \mathrm{PR}=1 / 2 \mathrm{a} \cdot \sqrt{\mathrm{x}_1^2+\mathrm{y}_1^2-\mathrm{a}^2} \\
\text { but } \Delta \mathrm{OLP}=1 / 2 \mathrm{OL} \cdot \mathrm{LP}=1 / 2(\mathrm{OP} \cos \theta)(\mathrm{OP} \sin \theta) \text { where } \angle \mathrm{POR}=\theta
\end{aligned}
\end{aligned}
$


$\Delta \mathrm{OPR}, \sin \theta=\frac{\mathrm{PR}}{\mathrm{OR}}=\frac{\sqrt{\mathrm{x}_1{ }^2+\mathrm{y}_1{ }^2-\mathrm{a}^2}}{\sqrt{\mathrm{x}_1{ }^2+\mathrm{y}_1{ }^2}}$ and$\cos \theta=\frac{\mathrm{OP}}{\mathrm{OR}}=\frac{\mathrm{a}}{\sqrt{\mathrm{x}_1{ }^2+\mathrm{y}_1{ }^2}}$

$
\begin{array}{ll}
\text { hence } \Delta \mathrm{LOP}=1 / 2 \mathrm{a}^2 \cos \theta \sin \theta=\frac{\sqrt{x_1^2+y_1^2-a^2}}{2\left(x_1^2+y_1^2\right)} a^3 & \text { and } \triangle \mathrm{RPQ}=2\left[\frac{1}{2} a \sqrt{x_1^2+y_1^2-a^2}-\frac{1}{2} a^3 \frac{\sqrt{x_1^2+y_1^2-a^2}}{x_1^2+y_1^2}\right] \\
=a \sqrt{x_1^2+y_1^2-a^2}\left[1-\frac{a^2}{x_1^2+y_1^2}\right]=a \sqrt{x_1^2+y_1^2-a^2} \frac{\left(x_1^2+y_1^2-a^2\right)}{x_1^2+y_1^2}=\frac{a\left(x_1^2+y_1^2-a^2\right)^{3 / 2}}{x_1^2+y_1^2}
\end{array}
$

Example 2: The angle between tangents from the origin to the circle $(x-7)^2+(y+1)^2=25$ is
1) $\pi / 3$
2) $\pi / 2$
3) $\pi / 6$
4) 0

Solution

$
\begin{aligned}
& \sin \theta=\frac{5}{\sqrt{50}}=\frac{1}{\sqrt{2}} \Rightarrow \theta=\frac{\pi}{4} \\
& \text { Angle between tangents }=\frac{\pi}{2} \text {. }
\end{aligned}
$


Hence (C) is the correct answer.

Example 3: The tangents to $\mathrm{x}^2+\mathrm{y}^2=\mathrm{a}^2$ having inclinations $\alpha$ and $\beta$ intersect at P . If $\cot \alpha+\cot \beta=0$, then the locus of P is
1) $x+y=0$
2) $x-y=0$
3) $x y=0$
4) None of these.

Solution
Let the coordinates of P be $(\mathrm{h}, \mathrm{k})$. Let the equation of a tangent from $\mathrm{P}(\mathrm{h}, \mathrm{k})$ to the circle $\mathrm{x}^2+\mathrm{y}^2=\mathrm{a}^2$ be

$
\mathrm{y}=\mathrm{mx}+\mathrm{a} \sqrt{1+\mathrm{m}^2}
$Since, $P(h, k)$ lies on $y=m x+a \sqrt{1+m^2}$, therefore,

$
\begin{aligned}
& \mathrm{k}=\mathrm{mh}+\mathrm{a} \sqrt{1+\mathrm{m}^2} \mathrm{P}(k-m h)^2=a \sqrt{(1+m)^2} \\
& \mathrm{pm}^2\left(\mathrm{k}^2-\mathrm{a}^2\right)-2 m k h+\mathrm{h}^2-\mathrm{a}^2=0
\end{aligned}
$

The is a quadratic in m . Let the two roots be $\mathrm{m}_1$ and $\mathrm{m}_2$, then

$
\mathrm{m}_1+\mathrm{m}_2=\frac{2 \mathrm{hk}}{\mathrm{k}^2-\mathrm{a}^2}
$

But $\tan \alpha=\mathrm{m}_1, \tan \beta=\mathrm{m}_2$ and it's given that

$
\cot \alpha+\cot \beta=0
$
$
\frac{1}{m_1}+\frac{1}{m_2}=0 \mathrm{pm}_1+m_2=0 \quad p \frac{2 h k}{k^2-a^2}=0
$

$\Rightarrow \quad \mathrm{hk}=0$. Hence, the locus of $(\mathrm{h}, \mathrm{k})$ is $\mathrm{xy}=0$.
Hence, the answer is the option (3).

Example 4: The slope of a common tangent to the ellipse $\frac{\mathrm{x}^2}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$ and a concentric circle of radius $r$ is (where $b<r<a$ )
1) $\tan ^{-1} \sqrt{\frac{r^2-b^2}{a^2-r^2}}$
2) $\sqrt{\frac{r^2-b^2}{a^2-r^2}}$
3) $\left(\frac{r^2-b^2}{a^2-r^2}\right)$
4) $\sqrt{\frac{a^2-r^2}{r^2-b^2}}$

Solution
$y=m x+\sqrt{a^2 m^2+b^2}$ is tangent to the ellipse.
Equation of concentric circle be $x^2+y^2=r^2$
$\mathrm{y}=\mathrm{mx} \pm \mathrm{r} \sqrt{1+\mathrm{m}^2}$ is tangent to the circle.

.Equation of concentric circle be $x^2+y^2=r^2$
$y=m x \pm r \sqrt{1+m^2}$ is tangent to the circle.

$
\begin{array}{cc}
\therefore \quad & r \sqrt{1+m^2}=\sqrt{a^2 m^2+b^2} \\
& \left(1+m^2\right) r^2=a^2 m^2+b^2 \\
& m^2\left(r^2-a^2\right)=b^2-r^2 \\
& m=\sqrt{\frac{r^2-b^2}{a^2-r^2}}
\end{array}
$

Hence, the answer is the option (2).

Example 5: From a point T , two mutually perpendicular tangents TA and TB are drawn to the parabola $\mathrm{y}^2=4 \mathrm{ax}$. If the minimum area of the circle having AB as diameter is k , then $\frac{\mathrm{k}}{\pi \mathrm{a}^2}$ is
1) 4
2) 1
3) 2
4) 8

Solution
Since tangents T A and T B are mutually perpendicular, circle drawn on A B as diameter passes through T. Hence, A B will be focal chord of the parabola. If A $\equiv\left(\right.$ at $\left.{ }^2, 2 a t\right)$, then

$
B \equiv\left(\frac{a}{t^2},-\frac{2 a}{t}\right)
$

Length of focal chord will be minimum when $t= \pm 1 \Rightarrow A \equiv(a, 2 a), B \equiv(a,-2 a) \Rightarrow A B$ will be the latus rectum. Hence, area of the circle is $\pi(2 \mathrm{a})^2=4 \pi \mathrm{a}^2$.
Hence, the answer is the option (1).

Frequently Asked Questions (FAQs)

Q: Can the pair of tangents formula be applied to study the properties of Apollonian circles?
A:
Apollonian circles are sets of circles tangent to three given circles. The pair of tangents concept is relevant here in understanding the points of tangency and the relationships between the circles. By analyzing the pairs of tangents from various points to these circles, we can
Q: What role do pair of tangents play in the classification of singularities of algebraic curves?
A:
In the study of singularities of algebraic curves, pair of tangents are crucial for understanding the local behavior near singular points. At a singular point, multiple tangent lines may exist, and the nature of these tangent pairs (real, complex, coincident) helps in classifying the type of singularity (e.g., node, cusp, tacnode). This classification is fundamental in algebraic geometry and singularity theory.
Q: How does the concept of pair of tangents relate to the theory of osculating circles in differential geometry?
A:
The osculating circle of a curve at a point is the circle that best approximates the curve near that point. The pair of tangents concept relates to this as follows: as a point approaches the curve, the pair of tangents from that point approaches the tangent at the point of contact, which is also the tangent to the osculating circle. This relationship helps in understanding curvature and local approximation of curves.
Q: Can the pair of tangents formula be used in the study of evolutes and involutes of curves?
A:
Yes, the pair of tangents concept is relevant in studying evolutes (the locus of centers of curvature) and involutes (curves orthogonal to all tangents of the original curve). The tangent lines that form a pair often relate to points on the evolute, while the involute can be understood as a curve whose tangents form specific pairs with respect to the original curve. This connection is particularly useful in gear design and mechanical engineering.
Q: How does the pair of tangents concept apply to the study of pedal curves in geometry?
A:
The pedal curve of a given curve with respect to a point is the locus of the feet of perpendiculars drawn from that point to the tangents of the original curve. The pair of tangents concept is crucial here, as each point on the pedal curve corresponds to one of the tangents in a pair drawn from the pedal point. This relationship helps in understanding the geometry of derived curves and has applications in mechanics and optics.
Q: What is the significance of pair of tangents in understanding the properties of self-polar triangles?
A:
A self-polar triangle with respect to a conic is one where each vertex is the pole of the opposite side. The pair of tangents concept is key to understanding these triangles: the tangents from any vertex of a self-polar triangle to the conic touch the conic at points that lie on the opposite side of the triangle. This property is fundamental in projective geometry and has applications in the theory of reciprocal figures in engineering.
Q: How can the pair of tangents formula be used to study the properties of confocal conics?
A:
Confocal conics are a family of conics sharing the same foci. The pair of tangents formula can be used to show that confocal conics intersect orthogonally, meaning their tangent lines at intersection points are perpendicular. This property is derived from analyzing the pairs of tangents at these intersection points and has important applications in classical mechanics, particularly in the study of elliptic coordinates.
Q: What is the relationship between pair of tangents and the concept of polar reciprocation in projective geometry?
A:
Polar reciprocation in projective geometry maps points to lines and vice versa with respect to a conic. The pair of tangents from a point to a conic corresponds to the intersection points of the polar line of that point with the conic. This duality principle is fundamental in projective geometry and helps in solving complex geometric problems by transforming them into potentially simpler dual problems.
Q: How does the pair of tangents concept contribute to the understanding of conic pencils?
A:
A conic pencil is a family of conics passing through four fixed points (which may be complex or coincident). The pair of tangents concept helps in analyzing the properties of conic pencils. For instance, the locus of points from which tangent pairs to all conics in the pencil form a constant angle is itself a conic. This relationship is useful in studying families of conics and their shared properties.
Q: What is the significance of the pair of tangents in the study of conic projections?
A:
In the study of conic projections, pair of tangents help understand how conics transform under different projections. As a conic is projected onto different planes, the behavior of tangent pairs provides insight into how the conic's shape and properties change. This is particularly important in fields like cartography and computer vision.