Sum of First n Terms of GP Formula

Sum of First n Terms of GP Formula

Komal MiglaniUpdated on 02 Jul 2025, 07:42 PM IST

A geometric sequence is a sequence where the first term is non-zero and the ratio between consecutive terms is always constant. In real life, we use geometric progressions to calculate the size of exponential population growth, such as bacteria in a container.

This Story also Contains

  1. Geometric Progression
  2. General Term of a GP
  3. Geometric Mean
  4. The sum of $ \text { n } $ term of a GP
  5. The sum of an infinite GP
  6. Application of GP
  7. Solved Examples Based on the Sum of n Terms of GP
Sum of First n Terms of GP Formula
Sum of First n Terms of GP Formula

In this article, we will cover the concept of the Sum of n term of Geometric Progression. This category falls under the broader category of Sequence and series, which is a crucial Chapter in class 11 Mathematics. It is not only essential for board exams but also for competitive exams like the Joint Entrance Examination(JEE Main) and other entrance exams such as SRMJEE, BITSAT, WBJEE, BCECE, and more. Questions based on this topic have been asked frequently in JEE Mains.

Geometric Progression

A geometric sequence is a sequence where the first term is non-zero and the ratio between consecutive terms is always constant. The 'constant factor' is called the common ratio and is denoted by ' $r$ '. $r$ is also a non-zero number.

The first term of a G.P. is usually denoted by $a$.

If $\mathrm{\mathit{a_1,a_2,a_3.....a_{n-1},a_n}}$is in geometric progression

$\mathrm{then,\;\mathit{r=\frac{a_2}{a_1}=\frac{a_3}{a_2}=....=\frac{a_n}{a_{n-1}}}}$

Eg,

  • $2,6,18,54, \ldots .(a=2, r=3)$
  • $4,2,1,1 / 2,1 / 4, \ldots .(a=4, r=1 / 2)$
  • $-5,5,-5,5, \ldots \ldots . .(a=-5, r=-1)$

General Term of a GP

If ' $a$ ' is the first term and ' $r$ ' is the common ratio, then

$a_1=a=a r^{1-1}\left(1^{\text {st }}\right.$ term $)$

$a_2=a r=a r^{2-1}\left(2^{\text {nd }}\right.$ term $)$

$a_3=a r^2=a r^{3-1} \quad\left(3^{\text {rd }}\right.$ term $)$

$a_n=a r^{n-1}\left(\mathrm{n}^{\mathrm{th}}\right.$ term $)$

So, the general term or $n^{\text {th }}$ term of a geometric progression is $a_n=ar^{n-1}$

Geometric Mean

If three terms are in G.P., then the middle term is called the Geometric Mean (G.M.) of the other two numbers. So if $\mathrm{a}, \mathrm{b}$, and $
\mathrm{c} \text { are in G.P., then } \mathrm{b} \text { is } \mathrm{GM} \text { of } \mathrm{a} \text { and } \mathrm{c} \text {, }
$

If $a_1, a_2, a_3, \ldots ., a_n$ are n positive numbers, then the Geometric Mean of these numbers is given by $G=\sqrt[n]{a_1 \cdot a_2 \cdot a_3 \cdot \ldots . . \cdot a_n}$

If $a$ and $b$ are two numbers and $G$ is the $G M$ of $a$ and $b$. Then, $a, G, \underline{b}$ are in geometric progression.

Hence, $G=\sqrt{a \cdot b}$

$
\text { Insertion of n-Geometric Mean Between a and b }
$

Let $\mathrm{G}_1, \mathrm{G}_2, \mathrm{G}_3 \ldots, \mathrm{G}_{\mathrm{n}}$ be n geometric mean between two numbers a and b . Then, $a, \mathrm{G}_1, \mathrm{G}_2, \mathrm{G}_3 \ldots, \mathrm{G}_{\mathrm{n}}, b$ is an G.P. Clearly, this G.P. contains $\mathrm{n}+2$ terms.
now, $\mathrm{b}=(\mathrm{n}+2)^{\text {th }}$ term $=\mathrm{ar}^{\mathrm{n}+2-1}$
$\therefore r=\left(\frac{b}{a}\right)^{\frac{1}{n+1}}$
[where, $\mathrm{r}=$ common ratio]

$
\begin{aligned}
& \therefore \mathrm{G}_1=\mathrm{ar}, \mathrm{G}_2=\mathrm{ar}^2, \mathrm{G}_3=\mathrm{ar}^3, \ldots ., \mathrm{Ga}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}} \\
& \Rightarrow \mathrm{G}_1=\mathrm{a}\left(\frac{\mathrm{b}}{\mathrm{a}}\right)^{\frac{1}{\mathrm{n}+1}}, \mathrm{G}_2=\mathrm{a}\left(\frac{\mathrm{b}}{\mathrm{a}}\right)^{\frac{2}{\mathrm{n}+1}}, \mathrm{G}_3=\mathrm{a}\left(\frac{\mathrm{b}}{\mathrm{a}}\right)^{\frac{3}{\mathrm{n}+1}} \ldots \ldots \\
& \mathrm{G}_{\mathrm{n}}=\mathrm{a}\left(\frac{\mathrm{b}}{\mathrm{a}}\right)^{\frac{\mathrm{n}}{\mathrm{a}+1}}
\end{aligned}
$

The sum of $ \text { n } $ term of a GP

Let $S_n$ be the sum of $n$ terms of the G.P. with the first term ' $a$ ' and common ratio ' $r$ '. Then

$
S_n = a + ar + ar^2 + \cdots + ar^{n-2} + ar^{n-1} \quad \text{(i)}
$

Multiply both sides by \( r \):

$
rS_n = ar + ar^2 + ar^3 + \cdots + ar^{n-1} + ar^n \quad \text{(ii)}
$

Subtract (ii) from (i):

$
S_n - rS_n = a - ar^n
$

Thus,

$
S_n = \frac{a - ar^n}{1 - r} = a \left( \frac{1 - r^n}{1 - r} \right)
$

$
\Rightarrow S_n = a \left( \frac{r^n - 1}{r - 1} \right)
$

The above formula does not hold for $r=1$
For $\mathrm{r}=1$, each of the n terms is equal to $a$, and thus the sum of $n$ terms of the G.P. is $S_n = na$.

$
\text { So, The sum of } n \text { terms of GP with first term 'a' and common ratio ' } r \text { ' is given by }
$

The sum of an infinite GP

Consider an infinite GP $a, a r, a r^2, a r^3, a r^4 \ldots \ldots \ldots \ldots \ldots \ldots \ldots$

If a is the first term and r is the common ratio of a G.P.

The last term is not known.

Then,

$
S_n = a \left( \frac{1 - r^n}{1 - r} \right) = \frac{a}{1 - r} - \frac{ar^n}{1 - r}
$

Let, $-1<r<1$, i.e. $|r|<1$, then

$\mathrm{\lim_{n\rightarrow \infty}r^n=0}$

[as this is infinite G.P., so $ n $ tends to infinity]

The sum of an infinite term of GP is given by

$\mathrm{S_{\infty}=\frac{a}{1-r}}$

$S_{\infty}$ is the sum of infinite terms of the G.P.Note: If $r \geq 1$, then the sum of an infinite G.P. tends to infinity.

Application of GP

  • Using Geometric Progression, we can convert non-terminating numbers into a fraction.

To write a non-terminating repeating number in $
\text { p/q form: }
$

Example:

In this example, we will convert the non-terminating number into a fraction.

The value of 0.358585858585..........

$\begin{array}{l}{0.3 \overline{5} \overline{8}=0.358585858 \ldots \ldots \text { to } \infty} \\ {\Rightarrow 0.3+0.058+0.00058+0.0000058+\ldots \ldots} \\ {\Rightarrow \frac{3}{10}+\frac{58}{10^{3}}+\frac{58}{10^{5}}+\frac{58}{10^{7}}+\ldots \ldots \ldots \ldots} \\\\ {\Rightarrow \frac{3}{10}+\frac{58}{10^{3}}\left(1+\frac{1}{10^{2}}+\frac{1}{10^{4}}+\ldots .\right)} \\\\ {\Rightarrow \frac{3}{10}+\frac{58}{10^{3}}\left(\frac{1}{1-\frac{1}{10^{2}}}\right)} \\\\ {\Rightarrow \frac{355}{990}}\end{array} $

  • The sum of the n-term of the series
JEE Main Highest Scoring Chapters & Topics
Focus on high-weightage topics with this eBook and prepare smarter. Gain accuracy, speed, and a better chance at scoring higher.
Download E-book

$a+a a+a a a+a a a a+\ldots \ldots \ldots ., \forall a \in \mathbb{N}, 1 \leq a \leq 9$

With the use of GP, we can find the sum of the n term of the above GP

The sum of the $ n $ term of GP is given by

$\frac{a}{9}\left[\frac{10}{9}\left(10^{n}-1\right)-n\right]$

  • The sum of the n-term of the series
    $0.\; a + 0.\; a a + 0.\; a a a + 0.\; a a a a + \ldots, \quad \forall a \in \mathbb{N}, \quad 1 \leq a \leq 9
    $

$\frac{a}{9}\left\{n-\frac{1}{9}\left[1-\left(\frac{1}{10}\right)^{n}\right]\right\}$

Recommend Video Based on Sum of n Terms of GP

Solved Examples Based on the Sum of n Terms of GP

Example 1: Let $\left\{a_k\right\}$ and $\left\{b_k\right\}, k \in \mathbb{N}$, be two G.P.s with common ratios $\mathrm{r}_1$ and $\mathrm{r}_2$ respectively such that $\mathrm{a}_1=\mathrm{b}_1=4$ and $\mathrm{r}_1<\mathrm{r}_2$. Let $c_{\mathrm{k}}=\mathrm{a}_{\mathrm{k}}+\mathrm{b}_{\mathrm{k}}, \mathrm{k} \in \mathbb{N}$. If $\mathrm{c}_2=5$ and $c_3=\frac{13}{4} \sum_{\text {then } \mathrm{k}=1}^{\infty} \mathrm{c}_{\mathrm{k}}-\left(12 \mathrm{a}_6+8 \mathrm{~b}_4\right)$ is equal to

[JEE MAINS 2023]

Solution:

$
\begin{aligned}
&\begin{array}{ll}
\mathrm{a}_1=4 & \text { GP } 4,4 \mathrm{r}_1, 4 \mathrm{r}_1^2- \\
\mathrm{b}_1=4 & \text { GP } 4,4 \mathrm{r}_2, 4 \mathrm{r}_2^2- \\
\mathrm{C}_2=\mathrm{a}_2+\mathrm{b}_2 \quad \mathrm{C}_3=\mathrm{a}_3+\mathrm{b}_3 \\
5=4 \mathrm{r}_1+4 \mathrm{r}_2 & \frac{13}{4}=4 \mathrm{r}_1^2+4 \mathrm{r}_2^2 \\
\frac{5}{4}=\mathrm{r}_1+\mathrm{r}_2 \ldots(1) \quad \mathrm{r}_1^2+\mathrm{r}_2^2=\frac{13}{16} \ldots \\
\frac{25}{16}=r_1^2+r_2^2+2 r_1 r_2 \\
\frac{25}{16}=\frac{13}{16}+2 r_1 r_2 \\
\Rightarrow r_1 r_2=\frac{12}{16 \times 2}=\frac{3}{8}
\end{array}\\
&\text { (2) }
\end{aligned}
$


$
\begin{aligned}
& \text { Now } r_1+\frac{3}{8 r_1}=\frac{5}{4} \\
& 8 r_1^2+3=10 r_1 \\
& \Rightarrow 8 r_1^2-10 r_1+3=0 \\
& r_1=\frac{3}{4}, r_1=\frac{1}{2} \\
& r_2=\frac{1}{2} r_2=\frac{3}{4} \\
& \because r_1<r_2 \\
& r_1=\frac{1}{2} \\
& \therefore \quad r_2=\frac{3}{4}
\end{aligned}
$

Now $C_k=a_k+b_k$

$
\begin{aligned}
& \sum_{\mathrm{k}=1}^{\infty} \mathrm{C}_{\mathrm{k}}=\frac{4}{1-\mathrm{r}_1}+\frac{4}{1-\mathrm{r}_2} \\
& =\frac{4}{1-\frac{1}{2}}+\frac{4}{1-\frac{3}{4}} \\
& =8+16=24 \\
& \sum_{\mathrm{k}=1}^{\infty} \mathrm{C}_{\mathrm{k}}-\left(12 \mathrm{a}_6+8 \mathrm{~b}_4\right) \Rightarrow 24-\left\{12 \times 4\left(\frac{1}{2}\right)^5+8 \times 4\left(\frac{3}{4}\right)^3\right\} \\
& =24-\left(12 \times \frac{1}{8}+8 \times \frac{27}{16}\right) \\
& =24-\left\{\frac{3}{2}+\frac{27}{2}\right\} \\
& =24-15 \\
& =9
\end{aligned}
$

Hence, the required answer is 9.

Example 2:

The sum of 20 terms of the series $2.2^2-3^2+2.4^2-5^2+2.6^2-\ldots \ldots \ldots$ is equal to [JEE MAINS 2023]

Solution:

$\begin{aligned} & \left(2^2-3^2+4^2-5^2+20 \text { terms }\right)+\left(2^2+4^2+\ldots+10 \text { terms }\right) \\ & -(2+3+4+5+\ldots+11)+4\left[1+2^2+\ldots 10^2\right] \\ & -\left[\frac{21 \times 22}{2}-1\right]+4 \times \frac{10 \times 11 \times 21}{6} \\ & =1-231+14 \times 11 \times 10 \\ & =1540+1-231 \\ & =1310\end{aligned}$

Hence, the required answer is 1310.

Example 3:

Let $A_1$ and $A_2$ be two arithmetic means and $G_1, G_2, G_3$ be three geometric means of two distinct positive numbers. Then $G_1^4+G_3^4+G_3^4+G_3^2 G_3^2$ is equal to

[JEE MAINS 2023]

Solution

$ \begin{aligned}
& \quad a, \mathrm{~A}_1, \mathrm{~A}_2, \text { bareinA.P. } \\
& d=\frac{b-a}{3}: A_1=a+\frac{b-a}{3}=\frac{2 a+b}{3} \\
& A_2=\frac{a+2 b}{3} \\
& A_1+A_2=a+b \\
& a, G_1, G_2, G_{s,} b \text { are in } G \cdot P \\
& r=\left(\frac{b}{a}\right)^{\frac{1}{4}} \\
& G_1=\left(a^3 b\right)^{\frac{1}{4}} \\
& G_2=\left(a^2 b^2\right)^{\frac{1}{4}} \\
& G_5=\left(a b^3\right)^{\frac{1}{4}}
\end{aligned} $

Example 4:

The 4th term of GP is 500 and its common ratio is $\frac{1}{m}, m \in \mathrm{N}_{\text {. }}$ Let $S_{\mathrm{n}}$ denote the sum of the first n terms of this GP. If $\mathrm{S}_6>\mathrm{S}_5+1$ and $\mathrm{S}_7<\mathrm{S}_6+\frac{1}{2}$, then the number of possible values of m is

[JEE MAINS 2023]

Solution


$
\mathrm{T}_4=500 \Rightarrow \mathrm{a}\left(\frac{1}{\mathrm{~m}}\right)^3=500 \Rightarrow \mathrm{a}=500 \mathrm{~m}^3
$
Now $\mathrm{S}_{\mathrm{n}}-\mathrm{S}_{\mathrm{n}-1}=\mathrm{a}\left(\frac{1-\mathrm{r}^{\mathrm{n}}}{1-\mathrm{r}}\right)-\mathrm{a}\left(\frac{1-\mathrm{r}^{\mathrm{n}-1}}{1-\mathrm{r}}\right)$

$
\begin{aligned}
& =\frac{a}{1-r}\left[r^{n-1}(1-r)\right] \\
& =a r^{n-1} \\
& =500 \mathrm{~m}^3\left(\frac{1}{m}\right)^{n-1} \\
& S_n-S_{n-1}=500 \mathrm{~m}^{4-n}
\end{aligned}
$


Now $S_6-S_s>1 \Rightarrow 500 \mathrm{~m}^{-2}>1 \ldots$
$\& S_7-S_6<\frac{1}{2} \Rightarrow 500 \mathrm{~m}^{-3}<\frac{1}{2} \ldots$
$\left.\begin{array}{lc}\text { from(1) } & \mathrm{m}^2<500 \\ \text { from(2) } & \mathrm{m}^3>1000\end{array}\right] 10<\mathrm{m} \leq 22$
The number of possible values of $m$ is $=12$

Example 5:

For $\mathrm{k} \in \mathrm{N}$, if the sum of the series $1+\frac{4}{\mathrm{k}}+\frac{8}{\mathrm{k}^2}+\frac{13}{\mathrm{k}^3}+\frac{19}{\mathrm{k}^4}+\ldots \ldots$ is 10 , then the value of k is:

[JEE MAINS 2023]

Solution

$\begin{aligned} & 10=1+\frac{4}{\mathrm{k}}+\frac{8}{\mathrm{k}^2}+\frac{13}{\mathrm{k}^3}+\frac{19}{\mathrm{k}^4}+\ldots . . \text { upto } \infty \\ & 9=\frac{4}{\mathrm{k}}+\frac{8}{\mathrm{k}^2}+\frac{13}{\mathrm{k}^3}+\frac{19}{\mathrm{k}^4}+\ldots . \text { upto } \infty \\ & \frac{9}{\mathrm{k}}=\frac{4}{\mathrm{k}^2}+\frac{8}{\mathrm{k}^3}+\frac{13}{\mathrm{k}^4}+\ldots . . \text { upto } \infty \\ & \mathrm{S}=9\left(1-\frac{1}{\mathrm{k}}\right)=\frac{4}{\mathrm{k}}+\frac{4}{\mathrm{k}^2}+\frac{5}{\mathrm{k}^3}+\frac{6}{\mathrm{k}^4} \ldots . . \text { upto } \infty \\ & \frac{\mathrm{S}}{\mathrm{k}}=\frac{4}{\mathrm{k}^2}+\frac{4}{\mathrm{k}^3}+\frac{5}{\mathrm{k}^4}+\ldots \ldots \text { upto } \infty \\ & \left(1-\frac{1}{\mathrm{k}}\right) \mathrm{S}=\frac{4}{\mathrm{k}}+\frac{1}{\mathrm{k}^3}+\frac{1}{\mathrm{k}^4}+\frac{1}{\mathrm{k}^5}+\ldots . \infty \\ & \left(1-\frac{1}{\mathrm{k}}\right)^2=\frac{4}{\mathrm{k}}+\frac{\frac{1}{\mathrm{k}^3}}{\left(1-\frac{1}{\mathrm{k}}\right)} \\ & 9(\mathrm{k}-1)^3=4 \mathrm{k}(\mathrm{k}-1)+1 \\ & k=2\end{aligned}$

Hence, the answer is 2.


Frequently Asked Questions (FAQs)

Q: What's the significance of the GP sum formula in understanding the concept of limits at infinity?
A:
The behavior of the GP sum as n approaches infinity provides a concrete example of limits at infinity. For |r| < 1, it demonstrates a convergent limit, while for |r| > 1, it shows divergence. This helps build intuition for more general limit concepts.
Q: How does the GP sum formula relate to the concept of differential equations?
A:
Some solutions to differential equations form GPs. Understanding the GP sum formula can help in analyzing these solutions, particularly in cases where we're interested in the cumulative effect over time.
Q: Can the GP sum formula be extended to handle sequences with complex starting terms?
A:
Yes, the formula works even when 'a' is a complex number. This extension allows for the analysis of more general complex-valued sequences, which can be useful in fields like signal processing and quantum mechanics.
Q: How does the GP sum formula relate to the concept of mathematical induction?
A:
The GP sum formula can be proved using mathematical induction. This proof method demonstrates how the formula holds for n=1, and if it holds for n, it must hold for n+1. This connection highlights the role of induction in deriving and verifying formulas.
Q: How can the GP sum formula be used to understand the behavior of feedback systems in engineering?
A:
In control theory, the response of certain feedback systems can be modeled as a GP. The sum formula helps engineers analyze the overall system behavior, including stability and steady-state response.
Q: How does the GP sum formula relate to the concept of generating functions in combinatorics?
A:
The GP sum formula is essentially the finite version of the generating function for a geometric sequence. Understanding this connection provides a bridge between finite sums and the more general concept of generating functions in combinatorics.
Q: Can the GP sum formula be extended to handle complex roots of unity?
A:
Yes, the formula can be applied when r is a complex root of unity (e.g., e^(2πi/k)). This leads to interesting patterns and is related to topics in number theory and the theory of cyclotomic fields.
Q: How does the GP sum formula relate to the concept of convergence in infinite series?
A:
The GP sum formula provides insight into when an infinite GP converges. By examining the behavior of the formula as n approaches infinity, we can determine that the series converges when |r| < 1 and diverges when |r| ≥ 1.
Q: What's the significance of the GP sum formula in computer science, particularly in algorithm analysis?
A:
The GP sum formula is crucial in analyzing the time complexity of divide-and-conquer algorithms. Many such algorithms have running times that form a GP, and the sum formula helps in deriving their overall time complexity.
Q: How can the GP sum formula be visualized geometrically?
A:
For |r| < 1, the sum can be visualized as the area of a rectangle minus a series of shrinking rectangles. For |r| > 1, it can be seen as the area of expanding rectangles. This geometric interpretation can provide intuition about the formula's behavior.