Imagine you are filling a water tank through two different pipes at the same time. One pipe fills faster, and the other slower, but you want to know the total water level as the valves approach full flow. In calculus, this is similar to algebra of limits, where we combine the behavior of multiple functions using limit laws for sums, products, quotients, and powers. Understanding how to evaluate limits algebraically helps simplify complex expressions, handle indeterminate forms, and apply methods like factorization, rationalization, and the squeeze theorem. These techniques are especially useful when dealing with polynomials, rational functions, trigonometric functions, or piecewise functions. In this article, we will explore the algebra of limits in mathematics, key properties, formulas, and examples to make limit evaluation simple and intuitive.
This Story also Contains
Algebra of limits is a fundamental branch of calculus that provides rules and formulas to calculate limits algebraically.
It allows combining functions using limit laws for sums, differences, products, quotients, and powers.
For example, if we have two functions $f(x)$ and $g(x)$, the limit of their sum can be calculated as:
$ \lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) $.
Algebra of limits is particularly useful for resolving indeterminate forms like $0/0$ and for systematically solving limits of polynomials, rational functions, trigonometric functions, exponential functions, and logarithmic functions.
Limit laws are essential because they allow us to:
Analyze function behavior near a point $x = a$.
Break down complex limits into simpler components.
Handle piecewise functions, continuous and discontinuous functions, and tricky indeterminate forms.
Without these laws, evaluating limits would require tedious calculations or graphical approximations.
By applying algebra of limits:
Complex expressions can be simplified step by step.
One-sided limits, indeterminate forms, and piecewise functions can be solved systematically.
Techniques like factorization, rationalization, and the squeeze theorem become easy to apply.
Example:
$ f(x) = \frac{x^2 - 4}{x - 2} $.
Direct substitution gives $ \frac{0}{0} $, which is indeterminate. Using factorization:
$ f(x) = \frac{(x-2)(x+2)}{x-2} = x+2 $.
So:
$ \lim_{x \to 2} f(x) = 2 + 2 = 4 $.
Learn the fundamental rules of limits, including sums, products, quotients, and powers, to simplify complex functions and solve limits algebraically with ease.
If $c$ is a constant:
$ \lim_{x \to a} c = c $.
This also applies to one-sided limits:
$ \lim_{x \to a^-} c = \lim_{x \to a^+} c = c $.
For functions $f(x)$ and $g(x)$:
$ \lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) $
$ \lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) $
Example:
$ \lim_{x \to 3} [(2x+1) + (x^2-4)] = \lim_{x \to 3} (2x+1) + \lim_{x \to 3} (x^2-4) = 7 + 5 = 12 $.
$ \lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) $.
Example:
$ \lim_{x \to 2} [x \cdot (x^2 + 1)] = \lim_{x \to 2} x \cdot \lim_{x \to 2} (x^2+1) = 2 \cdot 5 = 10 $.
If $ \lim_{x \to a} g(x) \neq 0 $:
$ \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} $.
Example:
$ \lim_{x \to 1} \frac{x^2-1}{x-1} = \lim_{x \to 1} \frac{(x-1)(x+1)}{x-1} = \lim_{x \to 1} (x+1) = 2 $.
For $n$ a positive integer:
$ \lim_{x \to a} [f(x)]^n = (\lim_{x \to a} f(x))^n $.
Example:
$ \lim_{x \to 3} (2x)^3 = [\lim_{x \to 3} 2x]^3 = (6)^3 = 216 $.
Follow a clear, systematic approach to calculate limits using substitution, factorization, rationalization, and handling indeterminate forms for accurate results.
If $f(x)$ is continuous at $x = a$:
$ \lim_{x \to a} f(x) = f(a) $.
Example:
$ \lim_{x \to 2} (3x+1) = 3(2) + 1 = 7 $.
Indeterminate forms like $0/0$ can be solved using factorization:
$ \lim_{x \to 2} \frac{x^2-4}{x-2} = \lim_{x \to 2} \frac{(x-2)(x+2)}{x-2} = \lim_{x \to 2} (x+2) = 4 $.
For expressions with square roots:
$ \lim_{x \to 1} \frac{\sqrt{x+3}-2}{x-1} = \lim_{x \to 1} \frac{(\sqrt{x+3}-2)(\sqrt{x+3}+2)}{(x-1)(\sqrt{x+3}+2)} = \lim_{x \to 1} \frac{x-1}{(x-1)(\sqrt{x+3}+2)} = \lim_{x \to 1} \frac{1}{\sqrt{x+3}+2} = \frac{1}{4} $.
Common indeterminate forms include: $0/0$, $\infty/\infty$.
Techniques include factorization, rationalization, algebraic simplification, and trigonometric identities.
Example:
$ \lim_{x \to 0} \frac{\sin x}{x} = 1 $.
Explore advanced methods like the Squeeze Theorem, limits of piecewise functions, and trigonometric, exponential, and logarithmic limits to tackle tricky calculus problems.
If $g(x) \le f(x) \le h(x)$ near $x = a$ and:
$ \lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L $,
then:
$ \lim_{x \to a} f(x) = L $.
For a piecewise function:
$ f(x) = \begin{cases} x^2, & x < 1 \ 2x + 1, & x > 1 \end{cases} $
LHL: $ \lim_{x \to 1^-} f(x) = 1^2 = 1 $
RHL: $ \lim_{x \to 1^+} f(x) = 2(1)+1 = 3 $
Since LHL $\neq$ RHL, the limit at $x=1$ does not exist.
$ \lim_{x \to 0} \frac{\sin x}{x} = 1 $,
$ \lim_{x \to 0} \frac{1 - \cos x}{x} = 0 $.
$ \lim_{x \to 0} \frac{e^x - 1}{x} = 1 $,
$ \lim_{x \to 1} \frac{\ln x}{x-1} = 1 $.
Example 1: $\lim\limits _{x \rightarrow \frac{\pi}{4}} \frac{\cot ^3 x-\tan x}{\cos \left(x+\frac{\pi}{4}\right)}$ is: [JEE Main 2019]
1) $4 \sqrt{2}$
2) $8$
3) $4$
4) $8 \sqrt{2}$
Solution:
Evaluation of Trigonometric limit -
$\lim\limits _{x \rightarrow a} \frac{\sin (x-a)}{x-a}=1$
$\lim\limits _{x \rightarrow a} \frac{\tan (x-a)}{x-a}=1$
put $\quad x=a+h$ where $h \rightarrow 0$
Then it comes
$
\begin{aligned}
& \lim\limits _{h \rightarrow 0} \frac{\sin h}{h}=\lim\limits _{h \rightarrow 0} \frac{\tan h}{h}=1 \\
& \therefore \lim\limits _{x \rightarrow 0} \frac{\sin x}{x}=1 \text { and } \\
& \therefore \quad \lim\limits _{x \rightarrow 0} \frac{\tan x}{x}=1
\end{aligned}
$
Limit of product/quotient -
Limit of product/quotient is the product/quotient of individual limits such that
$
\begin{aligned}
& \lim\limits _{x \rightarrow a}(f(x) \cdot g(x)) \\
& =\lim\limits _{x \rightarrow a} f(x), \lim\limits _{x \rightarrow a} g(x), \text { given that } f(x) \text { and } g(x) \text { are non-zero finite values } \\
& \lim\limits _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim\limits _{x \rightarrow a} f(x)}{\lim\limits _{x \rightarrow a} g(x)}, \text { given that } f(x) \text { and } g(x) \text { are non-zero finite values }
\end{aligned}
$
Also $\lim\limits _{x \rightarrow a} k f(x)$
$
=k \lim\limits _{x \rightarrow a} f(x)
$
Using LH Rule
$
\lim\limits _{x \rightarrow \frac{\pi}{4}} \frac{3 \cot ^2 x\left(-\csc ^2 x-\sec ^2 x\right)}{-\sin \left(x+\frac{\pi}{4}\right)}=8
$
Hence, the answer is the option 2.
Example 2: $\stackrel{x \rightarrow 0}{\lim } \frac{(27+x)^{1 / 3}-3}{9-(27+x)^{2 / 3}}$ equals [JEE Main 2018]
1) $\frac{1}{3}$
2) $-\frac{1}{3}$
3)$-\frac{1}{6}$
4) $\frac{1}{6}$
Solution:
As we have learned
Limit of product/quotient -
Limit of product is the product of individual limits such that
$
\begin{aligned}
& \lim\limits _{x \rightarrow a} f(x) \cdot g(x) \\
& =\lim\limits _{x \rightarrow a} f(x) \cdot \lim\limits _{x \rightarrow a} g(x) \\
& \text { also } \lim\limits _{x \rightarrow a} k f(x) \\
& =k \lim\limits _{x \rightarrow a} f(x) \\
& \lim\limits _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim\limits _{x \rightarrow a} f(x)}{\lim\limits _{x \rightarrow a} g(x)} \\
& \text { using approximation }(1+x)^n \approx 1+n x \\
& \Rightarrow \lim\limits _{x \rightarrow 0} \frac{3\left[1+\frac{1}{3} \times \frac{x}{27}-1\right]}{9\left[1-1-\frac{x}{27} \times \frac{2}{3}\right]} \\
& =-1 / 6
\end{aligned}
$
Hence, the answer is the option 3.
Hence, the answer is the option 3.
Example 3: For each $t \in R$, let $[t]$ be the greatest integer less than or equal to $t$ then $\lim\limits _{x \rightarrow 1^{+}} \frac{(1-|x|+\sin |1-x|) \sin \left(\frac{\pi}{2}[1-x]\right)}{|1-x|[1-x]}$ [JEE Main 2019]
1) equals $1$
2) equals $0$
3) equals $-1$
4) does not exist
Solution:
Limit of productiquotient is the product/quotient of individual limits such that
$
\lim\limits _{x \rightarrow a}(f(x) \cdot g(x))
$
$=\lim\limits _{x \rightarrow a} f(x) \cdot \lim\limits _{x \rightarrow a} g(x)$, given that $f(x)$ and $g(x)$ are non-zero finite values
$\lim\limits _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim\limits _{x \rightarrow a} f(x)}{\lim\limits _{x \rightarrow a} g(x)}$, given that $f(x)$ and $g(x)$ are non-zero finite values
$
\begin{aligned}
& \text { Also } \lim\limits _{x \rightarrow a} k f(x) \\
& =k \lim\limits _{x \rightarrow a} f(x)
\end{aligned}
$
Evaluation of Trigonometric limit -
$
\begin{aligned}
& \lim\limits _{x \rightarrow a} \frac{\sin (x-a)}{x-a}=1 \\
& \lim\limits _{x \rightarrow a} \frac{\tan (x-a)}{x-a}=1
\end{aligned}
$
put $x=a+h$ where $h \rightarrow 0$
Then it comes
$
\begin{aligned}
& \lim\limits _{h \rightarrow 0} \frac{\sin h}{h}=\lim\limits _{h \rightarrow 0} \frac{\tan h}{h}=1 \\
& \therefore \lim\limits _{x \rightarrow 0} \frac{\sin x}{x}=1 \text { and } \\
& \therefore \lim\limits _{x \rightarrow 0} \frac{\tan x}{x}=1 \\
& \lim\limits _{x \rightarrow 1^{+}} \frac{\left(1-|x|+\sin |1-x| \sin \left(\frac{\pi}{2}[1-x]\right)\right)}{|1-x|[1-x]} \\
& =\lim\limits _{x \rightarrow 1^{+}} \frac{(1-x)+\sin (x-1)}{(x-1)(-1)} \sin \left(\frac{\pi}{2}(-1)\right) \\
& =\lim\limits _{x \rightarrow 1^{+}}\left(1-\frac{\sin (x-1)}{x-1}\right)(-1)=0
\end{aligned}
$
Example 4: Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be defined as $f(x)=\left\{\begin{array}{cl}x+a & x<0 \\ |x-1| & x \geqslant 0\end{array}\right.$ and $g(x)=\left\{\begin{array}{cl}x+1 & x<0 \\ (x-1)^2+b & x \geqslant 0\end{array}\right.$. where $a, b$ are non-negative real numbers. If (gof) $(x)$ is continuous for all $x \in R$, then $\mathrm{a}+\mathrm{b}$ is equal to $\qquad$ [JEE Main 2021]
1) $1$
2) $2$
3) $3$
4) $4$
Solution:
$
\begin{aligned}
& g[f(x)]=\left\{\begin{array}{cc}
f(x)+1 & f(x)<0 \\
(f(x)-1)^2+b & f(x) \geq 0
\end{array}\right. \\
& g[f(x)]=\left\{\begin{array}{cc}
x+a+1 & x+a<0 \& x<0 \\
|x-1|+1 & |x-1|<0 \& x \geq 0 \\
(x+a-1)^2+b & x+a \geq 0 \& x<0 \\
(|x-1|-1)^2+b & |x-1| \geq 0 \& x \geq 0
\end{array}\right. \\
& g[f(x)]=\left\{\begin{array}{cc}
x+a+1 & x \in(-\infty,-a) \& x \in(-\infty, 0) \\
|x-1|+1 & x \in[-a, \infty) \& x \in(-\infty, 0) \\
(x+a-1)^2+b & x \in \phi \\
(|x-1|-1)^2+b & x \in R \& x \in[0, \infty)
\end{array}\right.
\end{aligned}
$
$g(f(x))$ is continuous
$
\begin{array}{ll}
\text { at } x=-a & \text { at } x=0 \\
1=b+1 & (a-1)^2+b=b \\
b=0 & a=1 \\
\Rightarrow \quad a+b=1
\end{array}
$
Hence, the answer is the option 1.
Example 5: Let $f, g$ and $h$ be the real valued functions defined on $\mathbb{R}$ as and $f(x)=\left\{\begin{array}{cl}\frac{x}{|x|}, & x \neq 0 \\ 1, & x=0\end{array}, g(x)=\left\{\begin{array}{cl}\frac{\sin (x+1)}{(x+1)}, & x \neq-1 \\ 1, & x=-1\end{array}\right.\right.$ and $\mathrm{h}(\mathrm{x})=2[\mathrm{x}]-\mathrm{f}(\mathrm{x})$, where $[\mathrm{x}]$ is the greatest integer $\leq \mathrm{x}$. Then the value of $x \rightarrow 1 \lim g(h(x-1))$ is:
[JEE Main 2023]
1) $-1$
2) $0$
3) $\sin (1)$
4) $1$
Solution:
$
\begin{aligned}
& \lim _{\delta \rightarrow 0} g(\mathrm{~h}(-\delta)) \quad \delta>0 \\
& \lim _{\delta \rightarrow 0} g(-2+1) \\
& \Rightarrow g(-1)=1
\end{aligned}
$
RHL
$
\begin{aligned}
& \lim _{\delta \rightarrow 0} g(h(\delta)) \\
& \lim _{\delta \rightarrow 0} g(2 \times 0-1) \\
& \lim _{\delta \rightarrow 0} g(-1) \\
& \lim _{x \rightarrow 1} g(h(x-1)=1
\end{aligned}
$
Hence, the answer is the option 4.
Below are the topics related to algebra of limits, from basic limit laws to different techniques, to build a strong foundation in mathematics.
Access complete NCERT notes, solutions, and exemplar problems for Limits and Derivatives in one place. These resources follow the latest CBSE guidelines and help build strong conceptual clarity for board exams and entrance tests.
NCERT Notes for Class 11 Maths Chapter 13 - Limits and Derivatives
NCERT Solutions for Class 11 Maths Chapter 13 - Limits and Derivatives
NCERT Exempar Solutions for Class 11 Maths Chapter 13 - Limits and Derivatives
Test your skills with carefully curated practice questions and solved examples on algebra of limits to improve accuracy and speed in limit evaluation.
Algebra Of Limits - Practice Question MCQ
We have shared the links below to practice questions on the related topics of algebra of limits:
Frequently Asked Questions (FAQs)
Algebra of limits is a set of rules and formulas used to calculate the limits of functions algebraically, including sums, differences, products, quotients, and powers.
Common limit formulas include:
$\displaystyle \lim_{x \to 0} \frac{\sin x}{x} = 1$
$\displaystyle \lim_{x \to 0} \frac{1 - \cos x}{x} = 0$
$\displaystyle \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$
One-sided limits refer to the behavior of a function as $x$ approaches a specific value from one side:
Left-Hand Limit: $\displaystyle \lim_{x \to a^-} f(x)$, as $x$ approaches $a$ from the left.
Right-Hand Limit: $\displaystyle \lim_{x \to a^+} f(x)$, as $x$ approaches $a$ from the right.
These are particularly useful for analyzing piecewise functions.
No, the limit does not exist for zero because for saying that limit exists; the function has to approach the same value regardless of which direction $x$ comes from.
A function $f(x)$ has a limit $L$ at $x=a $ if and only if it has both left and right limits at that point, and these one-sided limits are equal to Formally, $\lim\limits _{x \rightarrow a} f(x)=L$ if and only if $\lim\limits _{x \rightarrow a^{-}} f(x)=\lim\limits _{x \rightarrow a^{+}} f(x)=L$