Imagine standing on a swing and observing how your height changes as you move closer to the top or bottom of the swing. Even though your position changes continuously, you can predict the exact height at a certain point if you understand the pattern. Similarly, in mathematics, limits of trigonometric functions help us determine the value that functions like $\sin x$, $\cos x$, or $\tan x$ approach as $x$ gets very close to a specific point. In this article, we will explain the limits of trigonometric functions with step-by-step examples, standard formulas, NCERT-aligned exercises, and practice problems to help students and competitive exam aspirants master these fundamental concepts effectively.
This Story also Contains
Trigonometric limits are fundamental in calculus for evaluating the behavior of trigonometric functions like $\sin x$, $\cos x$, and $\tan x$ as $x$ approaches a specific value. These limits are crucial for solving derivatives, integrals, and oscillating function problems, and they form a key part of NCERT, CBSE, JEE, and CUET exam preparations.
Trigonometric equations involve trigonometric functions and are satisfied only for specific angle values, either finite or infinite. Calculating trigonometric limits often requires standard formulas and theorems from calculus.
Let $f$ and $g$ be two real-valued functions with the same domain such that:
$f(x) \le g(x) \quad \text{for all } x \text{ in the domain}$.
If for some $a$, both $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist, then:
$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$
This property is particularly useful when bounding oscillating trigonometric functions while solving limits.
Apart from direct substitution, factorization, and rationalization, the following standard formulas are essential for calculating trigonometric limits:
1. $\lim_{x \to 0} \frac{\sin x}{x} = 1$
2. $\lim_{x \to 0} \frac{\tan x}{x} = 1$
Since:
$\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\sin x}{x} \times \frac{1}{\cos x} = 1 \times 1 = 1$
3. $\lim_{x \to a} \frac{\sin(x-a)}{x-a} = 1$
Proof using substitution $h = x - a$:
$\lim_{x \to a} \frac{\sin(x-a)}{x-a} = \lim_{h \to 0} \frac{\sin h}{h} = 1$
4. $\lim_{x \to a} \frac{\tan(x-a)}{x-a} = 1$
5. $\lim_{x \to a} \frac{\sin(f(x))}{f(x)} = 1$, if $\lim_{x \to a} f(x) = 0$
Similarly:
$\lim_{x \to a} \frac{\tan(f(x))}{f(x)} = 1$, if $\lim_{x \to a} f(x) = 0$
6. $\lim_{x \to 0} \cos x = 1$
7. $\lim_{x \to 0} \frac{\sin^{-1} x}{x} = 1$
Since $\sin^{-1} x = y \implies x = \sin y$, we have:
$\lim_{x \to 0} \frac{\sin^{-1} x}{x} = \lim_{y \to 0} \frac{y}{\sin y} = 1$
8. $\lim_{x \to 0} \frac{\tan^{-1} x}{x} = 1$
Learn the key standard trigonometric limits like $\lim_{x \to 0} \frac{\sin x}{x}$ and $\lim_{x \to 0} \frac{\tan x}{x}$, which are essential for solving derivatives, integrals, and oscillating function problems in calculus.
The limit $\lim_{x \to 0} \frac{\sin x}{x} = 1$ is one of the most fundamental trigonometric limits in calculus. It is widely used to evaluate derivatives of sine functions and to solve oscillating function problems. Understanding this limit is crucial for NCERT, CBSE, JEE, and CUET exams, as many competitive problems are based on it.
The limit $\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$, while $\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$. These formulas help in simplifying trigonometric expressions and are essential in derivative and integral calculations in calculus.
For small values of $x$, $\lim_{x \to 0} \frac{\tan x}{x} = 1$, which can be derived using:
$\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x} = 1 \cdot 1 = 1$
This limit is extensively applied in solving derivatives of tangent functions and evaluating indeterminate forms in calculus problems.
Other essential trigonometric limits include:
$\lim_{x \to 0} \frac{\cot x}{x} = \infty$ (or undefined directly, often handled via $\frac{1}{\tan x}$)
$\lim_{x \to 0} (\sec x - 1)/x = 0$
$\lim_{x \to 0} (\csc x - 1/x) = 0$
These limits are important for solving advanced oscillating function problems in NCERT, JEE, and CBSE calculus exercises.
Explore effective techniques including direct substitution, algebraic identities, the Squeeze Theorem, and L’Hospital’s Rule to evaluate trigonometric limits.
If the function is continuous at the point of interest, the direct substitution method is the fastest way to evaluate the limit. For example, $\lim_{x \to \pi/4} \sin x = \sin(\pi/4) = \frac{\sqrt{2}}{2}$. This method is essential for quick problem-solving in exams.
Algebraic and trigonometric identities such as $\sin^2 x + \cos^2 x = 1$, $1 - \cos^2 x = \sin^2 x$, and double-angle formulas can simplify limits like $\lim_{x \to 0} \frac{1 - \cos 2x}{x^2} = 2$. This technique is critical for competitive exam-level trigonometric limits.
For oscillating functions like $\lim_{x \to 0} x \sin(1/x)$, the Sandwich Theorem provides a reliable method. If a function is bounded between two functions with the same limit, the Squeeze Theorem guarantees the limit of the target function.
When a trigonometric limit results in $0/0$ or $\infty/\infty$, L’Hospital’s Rule can be applied:
$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} = 1$
This is highly useful in JEE, CUET, and advanced CBSE problems involving indeterminate forms.
Follow a structured step-by-step approach to identify, simplify, and calculate trigonometric limits accurately, ensuring mastery of NCERT and competitive exam problems.
Determine if the limit is directly solvable, indeterminate, or oscillating. Recognizing the form is essential for choosing the correct solution technique.
Use trigonometric simplifications, such as $\sin^2 x = 1 - \cos^2 x$ or double-angle formulas, to rewrite the function in a solvable form.
Apply fundamental trigonometric limits like $\lim_{x \to 0} \frac{\sin x}{x} = 1$ and $\lim_{x \to 0} \frac{\tan x}{x} = 1$ to evaluate the simplified function.
Combine the results from simplification and formula application to conclude the limit accurately, ensuring correctness for NCERT exercises and competitive exams.
Rewrite using standard formula:
$\lim_{x \to 0} \frac{\sin 3x}{x} = \lim_{x \to 0} \frac{\sin 3x}{3x} \cdot 3 = 1 \cdot 3 = 3$
Using identity $1 - \cos 2x = 2 \sin^2 x$:
$\lim_{x \to 0} \frac{2 \sin^2 x}{x^2} = 2 \cdot \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 = 2 \cdot 1^2 = 2$
Example 1: $\lim\limits _{x \rightarrow 0} \frac{(1-\cos 2 x)^2}{2 x \tan x-x \tan 2 x}$ is [JEE Main 2016]
1) $-2$
2) $-\frac{1}{2}$
3) $\frac{1}{2}$
4) $2$
Solution:
$\begin{aligned}
& \lim\limits _{x \rightarrow 0} \frac{(1-\cos 2 x)^2}{2 x \tan x-x \tan 2 x} \\
& \lim\limits _{x \rightarrow 0} \frac{4 \sin ^4 x}{x(2 \tan x-\tan 2 x)} \\
& \because 1-\cos 2 x=2 \sin ^2 x \\
& \lim\limits _{x \rightarrow 0} 4\left(\frac{\sin x}{x}\right)^4 \frac{x^3}{(2 \tan x-\tan 2 x)}=\lim\limits _{x \rightarrow 0} \frac{4 x^3}{(2 \tan x-\tan 2 x)} \\
& \because \lim\limits _{x \rightarrow 0} \frac{\sin x}{x}=1
\end{aligned}$
Now use series expansion
$\begin{equation}
\begin{aligned}
&\begin{aligned}
& \lim\limits _{x \rightarrow 0} \frac{4 x^3}{(2 \tan x-\tan 2 x)} \\
& \lim\limits _{x \rightarrow 0} \frac{4 x^2}{2\left(x+\frac{x^3}{3}+\frac{2 x^5}{15}+\ldots\right)-\left(2 x+\frac{(2 x)^3}{3}+2 \cdot \frac{(2 x)^5}{15}+\ldots\right)} \\
& \lim\limits _{x \rightarrow 0} \frac{4 x^3}{2 x+\frac{2 x^3}{3}+\frac{4 x^5}{15}+\ldots-2 x-\frac{8 x^3}{3}-\frac{64 x^5}{15}-\ldots} \\
& \lim\limits _{x \rightarrow 0} \frac{4}{\frac{2}{3}+\frac{4 x^2}{15}+\ldots-\frac{8}{3}-\frac{64 x^2}{15}-\ldots} \\
& \lim\limits _{x \rightarrow 0} \frac{4}{\frac{2}{3}-\frac{8}{3}}=-2
\end{aligned}\\
&\text { Hence, the answer is the option } 1.
\end{aligned}
\end{equation}$
Example 2:
$\lim\limits _{x \rightarrow 0} \frac{x \cot (4 x)}{\sin ^2 x \cot ^2(2 x)}$ is equal to :
[JEE Main 2019]
1) $1$
2) $2$
3) $4$
4) $0$
Solution:
Evalution of Trigonometric limit -
$
\begin{aligned}
& \lim\limits _{x \rightarrow a} \frac{\sin (x-a)}{x-a}=1 \\
& \lim\limits _{x \rightarrow a} \frac{\tan (x-a)}{x-a}=1
\end{aligned}
$
put $x=a+h$ where $h \rightarrow 0$
Then it comes
$
\begin{aligned}
& \lim\limits _{h \rightarrow 0} \frac{\sin h}{h}=\lim\limits _{h \rightarrow 0} \frac{\tan h}{h}=1 \\
& \therefore \lim\limits _{x \rightarrow 0} \frac{\sin x}{x}=1 \text { and } \\
& \therefore \lim\limits _{x \rightarrow 0} \frac{\tan x}{x}=1 \\
& \lim\limits _{x \rightarrow 0} \frac{x \cot 4 x}{\sin ^2 x \cot ^2 2 x}=\lim\limits _{x \rightarrow 0} \frac{x \tan ^2 2 x}{\sin ^2 x \tan 4 x} \\
& =\lim\limits _{x \rightarrow 0} \frac{x\left(\frac{\tan ^2 2 x}{4 x^2}\right) \times 4 x^2}{\frac{\sin ^2 x}{x^2} \times x^2\left(\frac{\tan 4 x}{4 x}\right) \times 4 x} \\
& =1
\end{aligned}
$
$\begin{aligned}
&\left(\lim\limits _{z \rightarrow 0}\right) \frac{\tan z}{z}=1 \quad\left(\lim\limits _{z \rightarrow 0}\right) \frac{\sin z}{z}=1\\
&\text { Hence, the answer is the option } 1.
\end{aligned}$
Example 3: $\lim\limits _{x \rightarrow \frac{\pi}{2}} \frac{\cot x-\cos x}{(\pi-2 x)^3}$ equals:
[JEE Main 2017]
1) $\frac{1}{16}$
2) $\frac{1}{8}$
3) $\frac{1}{4}$
4) $\frac{1}{24}$
Solution:
$\begin{equation}
\begin{aligned}
&\begin{aligned}
& \lim\limits _{x \rightarrow \frac{\pi}{2}} \frac{\cot x-\cos x}{(\pi-2 x)^3} \\
& \text { Put } x=\frac{\pi}{2}-h \\
& \Rightarrow \lim\limits _{h \rightarrow 0} \frac{\cot \left(\frac{\pi}{2}-h\right)-\cos \left(\frac{\pi}{2}-h\right)}{\left[\pi-2\left(\frac{\pi}{2}-h\right)\right]^3} \\
& \Rightarrow \lim\limits _{h \rightarrow 0} \frac{\tan h-\sin h}{(\pi-\pi+2 h)^3} \\
& \Rightarrow \lim\limits _{h \rightarrow 0} \frac{\tanh (1-\cos h)}{8 h^3} \\
& \Rightarrow \frac{1}{8} \lim\limits _{h \rightarrow 0} \frac{\tan h}{h} \cdot \frac{2 \sin ^2 \frac{h}{2}}{h^2} \\
& \Rightarrow \frac{1}{8} \lim\limits _{h \rightarrow 0} \frac{\tan h}{h} \cdot \frac{2 \sin ^2 \frac{h}{2}}{4 \cdot\left(\frac{h}{2}\right)^2} \\
& \Rightarrow \frac{1}{8} \times 1 \times \frac{1}{2}=\frac{1}{16}
\end{aligned}\\
&\text { Hence, the answer is the option } 1.
\end{aligned}
\end{equation}$
Example 4: $\lim\limits _{x \rightarrow 0} \frac{(1-\cos 2 x)(3+\cos x)}{x \tan 4 x}$ is equal to :
[JEE Main 2013]
1) $2$
2) $-0.25$
3) $0.5$
4) $1$
Solution:
$
\begin{aligned}
& \lim\limits _{x \rightarrow 0} \frac{(1-\cos 2 x)(3+\cos x)}{x \tan 4 x} \\
& \lim\limits _{x \rightarrow 0} \frac{2 \sin ^2 x(3+\cos x)}{4 x^2 \frac{\tan 4 x}{4 x}} \\
& =\frac{1}{2} \times 4=2
\end{aligned}
$
Hence, the answer is the option (1).
Example 5 : If $\alpha$ is the positive root of the equation, $p(x)=x^2-x-2=0$, then $\lim\limits _{x \rightarrow \alpha^{+}} \frac{\sqrt{1-\cos (p(x))}}{x+\alpha-4}$ is equal to: [JEE Main 2020]
$\frac{3}{2}$
2) $\frac{3}{\sqrt{2}}$
3) $\frac{1}{\sqrt{2}}$
4) $1$
Solution:
$\begin{equation}
\begin{aligned}
&\begin{aligned}
& x^2-x-2=0 \\
& \text { roots are } 2 \&-1 \\
& \Rightarrow \lim\limits _{x \rightarrow 2^{+}} \frac{\sqrt{1-\cos \left(x^2-x-2\right)}}{(x-2)} \\
& =\lim\limits _{x \rightarrow 2^{+}} \frac{\sqrt{2 \sin ^2 \frac{\left(x^2-x-2\right)}{2}}}{(x-2)} \\
& =\lim\limits _{x \rightarrow 2^{+}} \frac{\sqrt{2} \sin \left(\frac{(x-2)(x+1)}{2}\right)}{(x-2)} \\
& =\frac{3}{\sqrt{2}}
\end{aligned}\\
&\text { Hence, the answer is an option (2). }
\end{aligned}
\end{equation}$
Check out a comprehensive list of limit-related topics to strengthen your concepts for limits, which are also crucial for CBSE, JEE, and CUET preparation.
Access NCERT-aligned notes, exercises, and exemplar solutions for Limits and Derivatives to strengthen your understanding of trigonometric limits and build a strong foundation for calculus and competitive exams.
NCERT Notes for Class 11 Maths Chapter 13 - Limits and Derivatives
NCERT Solutions for Class 11 Maths Chapter 13 - Limits and Derivatives
NCERT Exempar Solutions for Class 11 Maths Chapter 13 - Limits and Derivatives
Practice well-structured questions and solved examples to master trigonometric limits, improve speed and accuracy, and prepare effectively for NCERT exercises, CBSE exams, and competitive tests like JEE and CUET.
Limits Of Trigonometric Functions - Practice Question MCQ
We have shared the links below to practice questions on the related topics of limits:
Frequently Asked Questions (FAQs)
Trigonometric limits describe the value that trigonometric functions like $\sin x$, $\cos x$, or $\tan x$ approach as $x$ gets very close to a specific point. They are fundamental for derivatives, integrals.
Using the identity $1 - \cos x = 2 \sin^2(x/2)$, the limit simplifies to $\lim_{x \to 0} \frac{2 \sin^2(x/2)}{x^2} = \frac{1}{2}$.
The Sandwich (Squeeze) Theorem is useful for oscillating functions like $\lim_{x \to 0} x \sin(1/x)$, where the function is bounded between two simpler functions with the same limit.
Trigonometric limits are used to derive the basic derivatives of sine, cosine, and tangent functions, such as $\frac{d}{dx}(\sin x) = \cos x$ and $\frac{d}{dx}(\tan x) = \sec^2 x$.
Yes. Important limits include $\lim_{x \to 0} \frac{\sin^{-1} x}{x} = 1$ and $\lim_{x \to 0} \frac{\tan^{-1} x}{x} = 1$, which are used in derivatives, integrals, and calculus problem-solving.