Foot of Perpendicular and Image

Foot of Perpendicular and Image

Komal MiglaniUpdated on 02 Jul 2025, 07:43 PM IST

In geometry, the concept of the "foot of perpendicular" refers to the point at which a perpendicular line drawn from a point meets another line, plane, or surface. The foot of the perpendicular is widely used in determining distances, angles, and projections, making it an essential tool for solving numerous geometric problems.

Foot of Perpendicular and Image
Foot of Perpendicular and Image

Foot of Perpendicular

The foot of the perpendicular is defined as the point at which a perpendicular line from a given point intersects another geometric object, such as a line, plane, or surface. If P is a point not on the line L, and a perpendicular is dropped from P to L, then the point F where the perpendicular meets L is called the foot of the perpendicular from P to L.

Foot of perpendicular of $P\left(x_1, y_1\right)$ on the line $A B$ : $a x+b y+c=0$ is $M\left(x_2, y_2\right)$. then
$
\frac{\mathrm{x}_2-\mathrm{x}_1}{\mathbf{a}}=\frac{\mathrm{y}_2-\mathrm{y}_1}{\mathrm{~b}}=-\frac{\left(\mathrm{ax}_1+\mathrm{by}_1+\mathrm{c}\right)}{\left(\mathrm{a}^2+\mathrm{b}^2\right)}
$

Proof:
Let the coordinate of the foot of the perpendicular be $M\left(x_2, y_2\right)$. Then, point $M$ lies on the line $A B$.
$
\Rightarrow \quad \mathrm{ax}_2+\mathrm{by}_2+\mathrm{c}=0
$
and, $\quad \because \mathrm{PM} \perp \mathrm{AB}$
then, (slope of PM$)($ slope of AB$)=-1$
$
\begin{array}{ll}
\Rightarrow & \left(\frac{\mathrm{y}_2-\mathrm{y}_1}{\mathrm{x}_2-\mathrm{x}_1}\right)\left(-\frac{\mathrm{a}}{\mathrm{b}}\right)=-1 \\
\text { or } & \frac{\mathrm{x}_2-\mathrm{x}_1}{\mathrm{a}}=\frac{\mathrm{y}_2-\mathrm{y}_1}{\mathrm{~b}}
\end{array}
$

Using ratio and proportion
$
\begin{aligned}
& \frac{x_2-x_1}{a}=\frac{y_2-y_1}{b}=\frac{a\left(x_2-x_1\right)+b\left(y_2-y_1\right)}{a^2+b^2} \\
& \frac{x_2-x_1}{a}=\frac{y_2-y_1}{b}=-\frac{\left(a x_1+b y_1+c\right)}{a^2+b^2}
\end{aligned}
$
(Using (i))

Recommended Video Based on Foot of Perpendicular


Solved Examples Based on Foot of Perpendicular:

Example 1: The coordinates of the foot of the perpendicular from the point $\mathbf{P}(\mathbf{2}, \mathbf{3})$ to the line $3 x-4 y-16=0$
1) $(5,-1)$
2) $(3,4)$
3) $(1,2)$
4) $(2,3)$

Solution
$
\frac{\mathrm{x}_2-\mathrm{x}_1}{\mathrm{a}}=\frac{\mathrm{y}_2-\mathrm{y}_1}{\mathrm{~b}}=-\frac{\left(\mathrm{ax}_1+\mathrm{by}_1+\mathrm{c}\right)}{\left(\mathrm{a}^2+\mathrm{b}^2\right)}
$

Applying this formula
$
\begin{aligned}
& \frac{x_2-2}{3}=\frac{y_2-3}{-4}=-\frac{(3(2)-4(3)-19)}{3^2+4^2} \\
& \frac{x_2-2}{3}=\frac{y_2-3}{-4}=1 \\
& \frac{x_2-2}{3}=1 \text { and } \frac{y_2-3}{-4}=1 \\
& x_2=5 \text { and } y_2=-1
\end{aligned}
$

Hence, the answer is the option 1.

Example 2: The coordinates of the foot of perpendicular from $(\mathrm{a}, 0)$ on the line $y=m x+\frac{a}{m}$ are
1) $\left(0, \frac{-a}{m}\right)$
2) $\left(\frac{a}{m}, 0\right)$
3) $\left(0, \frac{a}{m}\right)$
4) None

Solution
The line can be re-written as $m x-y+\frac{a}{m}=0$
Using the formula
$
\begin{aligned}
& \frac{\mathbf{x}_2-\mathbf{x}_{\mathbf{1}}}{\mathbf{a}}=\frac{\mathbf{y}_{\mathbf{2}}-\mathbf{y}_{\mathbf{1}}}{\mathbf{b}}=-\frac{\left(\mathbf{a x}_{\mathbf{1}}+\mathbf{b y}_{\mathbf{1}}+\mathbf{c}\right)}{\left(\mathbf{a}^2+\mathbf{b}^2\right)} \\
& \frac{x_2-a}{m}=\frac{y_2-0}{-1}=-\frac{m(a)-0+\frac{a}{m}}{m^2+1^2} \\
& \frac{x_2-a}{m}=\frac{y_2}{-1}=-\frac{a}{m} \\
& x_2=0 \text { and } y_2=\frac{a}{m}
\end{aligned}
$

Hence, the answer is the option 3.

Example 3: The foot of the perpendicular on the line $4 \mathrm{x}+\mathrm{y}=\mathrm{k}$ drawn from the origin is C . If the line cuts the x -axis and Y -axis at A and B respectively then BC : CA is
1) $1: 4$
2) $4: 1$
3) $1: 16$
4) $16: 1$

Solution
$\tan \left(180^{\circ}-\theta\right)=$ slope of $\mathrm{AB}=-4$
$\therefore \quad \tan \theta=4$
$\therefore \quad \frac{\mathrm{OC}}{\mathrm{AC}}=\tan \theta, \frac{\mathrm{OC}}{\mathrm{BC}}=\cot \theta$
$\Rightarrow \quad \frac{\mathrm{BC}}{\mathrm{AC}}=\frac{\tan \theta}{\cot \theta}=\tan ^2 \theta=16$


Example 4: The foot of the perpendicular on the line $x+3 y=\lambda$ drawn from the origin is C. If the line cuts the $x$-axis a $y$-axis at A and B respectively then $\mathrm{BC}: \mathrm{CA}$ is

1) $1: 3$
2) $3: 1$
3) $1: 9$
4) $9: 1$

Solution
$\tan \left(180^{\circ}-\theta\right)=$ slope of $\mathrm{AB}=-1 / 3$
$\therefore \quad \tan \theta=1 / 3$
$\therefore \quad \frac{\mathrm{OC}}{\mathrm{AC}}=\tan \theta, \frac{\mathrm{OC}}{\mathrm{BC}}=\cot \theta$
$\Rightarrow \quad \frac{\mathrm{BC}}{\mathrm{AC}}=\frac{\tan \theta}{\cot \theta}=\tan ^2 \theta=1 / 9$


Example 5: The middle point of the line segment joining $(3,-1)$ and $(1,1)$ is shifted by two units (in the sense of increasing $y$ ) perpendicular to the line segment. Find the co-ordinates of the point in the new position.
1) $(4, \sqrt{2})$
2) $(2+\sqrt{2}, \sqrt{2})$
3) $(2+\sqrt{2}, 2)$
4) $(2-\sqrt{2}, 2)$

Solution
Let $P$ be the middle point of the line segment joining
$\mathrm{A}(3,-2)$ and $\mathrm{B}(1,1)$
Then
$
\mathrm{P}=\left(\frac{3+1}{2}, \frac{-1+1}{2}\right)=(2,0)
$

Let $P$ be shifted to $Q$ where $P Q=2$ and $y$ co-ordinate of $Q$ is greater than $P$
Now slope of $A B=-1$
$\therefore$ slope of $\mathrm{PQ}=1$

Co-ordinates of Q by distance formula $=(2 \pm 2 \cos \theta, 0 \pm 2 \sin \theta)$ where $\tan \theta=1$
$
=\left(2 \pm 2 \cdot \frac{1}{\sqrt{2}}, \quad 0 \pm 2 \cdot \frac{1}{\sqrt{2}}\right)=(2 \pm \sqrt{2}, \pm \sqrt{2})
$
as $y$ co-ordinates of $Q$ is greater than that of $P$.
Hence, $\mathrm{Q}=(2+\sqrt{2}, \sqrt{2})$ is the required point.

Frequently Asked Questions (FAQs)

Q: How can you use the concept of foot of perpendicular to solve problems involving the intersection of a line and a plane in 3D space?
A:
To find the intersection:
Q: What is the role of the foot of perpendicular in understanding and calculating moments of inertia in physics?
A:
The foot of perpendicular is crucial in calculating moments of inertia:
Q: How does the concept of foot of perpendicular apply to finding the distance between a point and a plane in 3D space?
A:
To find the distance between a point and a plane:
Q: What is the significance of the foot of perpendicular in understanding and solving problems related to parabolas?
A:
The foot of perpendicular is significant in parabolas:
Q: How can you use the concept of foot of perpendicular to find the point on a plane closest to a line in 3D space?
A:
To find the closest point:
Q: What is the role of the foot of perpendicular in understanding and calculating work done by a force in physics?
A:
In physics, work done by a force is calculated as the product of the force magnitude and the displacement in the direction of the force. The foot of perpendicular helps in determining the component of displacement parallel to the force:
Q: How does the concept of foot of perpendicular relate to the properties of tangent lines to circles?
A:
The foot of perpendicular is significant in understanding tangent lines to circles:
Q: What is the significance of the foot of perpendicular in understanding and calculating cross products of vectors?
A:
While the foot of perpendicular isn't directly used in calculating cross products, understanding it helps in geometric interpretation:
Q: How can you use the foot of perpendicular to solve problems involving the reflection of light off surfaces?
A:
In optics, the foot of perpendicular is crucial for understanding reflection:
Q: What is the significance of the foot of perpendicular in solving systems of linear equations geometrically?
A:
While not directly used in solving systems of linear equations, the concept of foot of perpendicular can help visualize the geometric interpretation of solutions: