Geometrical Interpretation of Product of Vectors

Geometrical Interpretation of Product of Vectors

Komal MiglaniUpdated on 02 Jul 2025, 07:44 PM IST

The cross( or vector) product of two vectors results in a vector. Based on this type of product for vectors, we have various applications in geometry, mechanics, and engineering. This application of vectors can be used to find the Area of a Parallelogram and the Area of a Triangle. In real life, we use vector( or cross ) products to find torque on a wrench, magnetic force on a moving electric charge, angular momentum of a rotating object, etc.

This Story also Contains

  1. Geometrical Interpretation of Scalar Product
  2. Geometrical Interpretation of Vector Product
  3. 1) Area of Parallelogram
  4. 2) Area of Triangle
  5. Solved Examples Based on Geometrical Interpretation of Product of Vectors
Geometrical Interpretation of Product of Vectors
Geometrical Interpretation of Product of Vectors

In this article, we will cover the concept of Geometrical Interpretation of Vector products. This topic falls under the broader category of Vector Algebra, which is a crucial chapter in Class 11 Mathematics. This is very important not only for board exams but also for competitive exams, which even include the Joint Entrance Examination Main and other entrance exams: SRM Joint Engineering Entrance, BITSAT, WBJEE, and BCECE. A total of fifteen questions have been asked on this topic in JEE Main from 2013 to 2023 including one in 2020, one in 2021, and three in 2023.

Geometrical Interpretation of Scalar Product

If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are two non-zero vectors, then their scalar product (or dot product) is denoted by $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$ and is defined as
$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \cos \theta . \quad(0 \leq \theta \leq \pi) \space{\text {where } \theta}$ is the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$

Let $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ be two vectors represented by $O A$ and OB, respectively.
Draw $\mathrm{BL} \perp \mathrm{OA}$ and $\mathrm{AM} \perp \mathrm{OB}$.
From triangles $O B L$ and $O A M$ we have $O L=O B \cos \theta$ and $O M=O A \cos \theta$.
Here OL and OM are known as projections of $\overrightarrow{\mathbf{b}}$ on $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{a}}$ on $\overrightarrow{\mathbf{b}}$ respectively.

JEE Main Highest Scoring Chapters & Topics
Focus on high-weightage topics with this eBook and prepare smarter. Gain accuracy, speed, and a better chance at scoring higher.
Download E-book


Now, $\quad \begin{aligned} \vec{a} \cdot \vec{b} & =|\vec{a}||\vec{b}| \cos \theta \\ & =|\vec{a}|(O B \cos \theta) \\ & =|\vec{a}|(O L) \\ & =(\text { magnitude of } \vec{a})(\text { projection of } \vec{b} \text { on } \vec{a}) \\ \text { Again, } \quad \vec{a} \cdot \vec{b} & =|\vec{a}||\vec{b}| \cos \theta \\ & =|\vec{b}|(|\vec{a}| \cos \theta) \\ & =|\vec{b}|(O A \cos \theta) \\ & =|\vec{b}|(O M) \\ & =(\text { magnitude of } \vec{b})(\text { projection of } \vec{a} \text { on } \vec{b})\end{aligned}$

Thus. geometrically interpreted, the scalar product of two vectors is the product of the modulus of either vector and the projection of the other in its direction.

Thus,

Projection of $\overrightarrow{\mathbf{a}}$ on $\overrightarrow{\mathbf{b}}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}=\overrightarrow{\mathbf{a}} \cdot \frac{\vec{b}}{|\vec{b}|}=\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{b}}$
Projection of $\vec{b}$ on $\overrightarrow{\mathbf{a}}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}=\vec{b} \cdot \frac{\vec{a}}{|\vec{a}|}=\vec{b} \cdot \hat{\mathbf{a}}$
What is Vector( or cross-product)?
The vector product of two nonzero vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, is denoted by $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ and defined as,

$
\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta \hat{\mathbf{n}}
$

where $\theta$ is the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}, 0 \leq \theta \leq \pi$ and $\hat{\mathbf{n}}$ is a unit vector perpendicular to both $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, such that $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\hat{\mathbf{n}}$ form a right-hand system.

Geometrical Interpretation of Vector Product

The vector product of two nonzero vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, is denoted by $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ and defined as,

$
\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \sin \theta \hat{\mathbf{n}}
$

where $\theta$ is the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}, 0 \leq \theta \leq \pi$ and $\hat{\mathrm{n}}$ is a unit vector perpendicular to both $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, such that $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\hat{\mathrm{n}}$ form a right-hand system.

1) Area of Parallelogram

The area of a parallelogram is the region covered by a parallelogram in the plane. If $\vec{a}$ and $\overrightarrow{\mathbf{b}}$, are two non-zero, non-parallel vectors representing two adjacent sides of the parallelogram then the modulus of cross product of the vector $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, represents the area of a parallelogram. If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, are two non-zero, non-parallel vectors represented by $A D$ and $A B$ respectively and let $\theta$ be the angle between them.

$\begin{aligned} & \text { In } \triangle \mathrm{ADE}, \sin \theta=\frac{D E}{A D} \\ & \Rightarrow \quad D E=A D \sin \theta=|\overrightarrow{\mathbf{a}}| \sin \theta \\ & \text { Area of parallelogram } \mathrm{ABCD}=\mathrm{AB} \cdot \mathrm{DE} \\ & \text { Thus, } \\ & \text { Area of parallelogram } \mathrm{ABCD}=|\vec{b}||\vec{a}| \sin \theta=\mid \vec{a} \times \vec{b}\end{aligned}$

2) Area of Triangle

The region covered by a triangle in a plane is called the area of a Triangle. If $\vec{a}$ and $\overrightarrow{\mathbf{b}}$, are two non-zero, non-parallel vectors represented as the adjacent sides of a triangle then the area of a triangle is half of the modulus of the vector product of the vector $\vec{a}$ and $\vec{b}$. If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$, are two non-zero, non-parallel vectors represented as the adjacent sides of a triangle then its area is given as $\frac{1}{2}|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|$

The area of a triangle is $1 / 2$ (Base) $\times$ (Height)
From the figure,
Area of triangle $\mathrm{ABC}=\frac{1}{2} \mathrm{AB} \cdot \mathrm{CD}$
But $\mathrm{AB}=|\overrightarrow{\mathbf{b}}|$ (as given), and $\mathrm{CD}=|\overrightarrow{\mathbf{a}}| \sin \theta$
Thus, Area of triangle $\mathrm{ABC}=\frac{1}{2}|\overrightarrow{\mathbf{b}}||\overrightarrow{\mathbf{a}}| \sin \theta=\frac{1}{2}|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|$
NOTE:
1. The area of a parallelogram with diagonals $\overrightarrow{\mathbf{d}}_1$ and $\overrightarrow{\mathbf{d}}_2$ is $\frac{1}{2}\left|\overrightarrow{\mathbf{d}}_1 \times \overrightarrow{\mathbf{d}}_2\right|$.
2. The area of a plane quadrilateral $A B C D$ with AC and BD as diagonal is $\frac{1}{2}|\overrightarrow{\mathbf{A C}} \times \overrightarrow{\mathrm{BD}}|$.
3. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are position vectors of a $\triangle A B C$, then its area is $\frac{1}{2}|(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}})+(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})+(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})|$

Recommended Video Based on Geometrical Interpretation of Product of Vectors


Solved Examples Based on Geometrical Interpretation of Product of Vectors

Example 1: Let for a triangle ABC,

$\begin{aligned} & \overrightarrow{\mathrm{AB}}=-2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+3 \hat{\mathrm{k}} \\ & \overrightarrow{\mathrm{CB}}=\alpha \hat{\mathrm{i}}+\beta \hat{\mathrm{j}}+\gamma \hat{\mathrm{k}} \\ & \overrightarrow{\mathrm{CA}}=4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\delta \hat{\mathrm{k}}\end{aligned}$

If $\delta>0$ and the area of the triangle ABC is $5 \sqrt{6}$, then $\overrightarrow{\mathrm{CB}} \cdot \overrightarrow{\mathrm{CA}}$ is equal to [JEE MAINS 2023]

Solution

$\begin{aligned} & \overrightarrow{\mathrm{CA}}+\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{CB}} \\ & \langle 4,3, \delta\rangle \cdot+\langle-2,1,3\rangle=\overrightarrow{\mathrm{CB}} \\ & \Rightarrow \overrightarrow{\mathrm{CB}}=\langle 2,4,3+\delta\rangle\end{aligned}$

$\begin{aligned} & \Rightarrow|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|^2=600 \\ & \Rightarrow 5 \delta^2+30 \delta-275=0 \\ & \Rightarrow \mathrm{S}^2+6 \delta-55=0 \\ & \Rightarrow(\delta+11)(\delta-5)=0 \\ & \delta=5 \\ & \overrightarrow{\mathrm{CB}}=<2,3,8> \\ & \overrightarrow{\mathrm{CB}} \cdot \overrightarrow{\mathrm{CA}} \cdot=<2,4,8>\cdot<4,3,5> \\ & =8+12+40=60\end{aligned}$

Hence, the answer is 60

Example 2: Let $\vec{a}=4 \hat{i}+3 \hat{j}+5 \hat{k}$ and $\vec{\beta}=\hat{i}+2 \hat{j}-4 \hat{k}$, Let $\vec{\beta}_1$ be parallel to $\vec{a}$ and $\vec{\beta}_2$ be perpendicular to $\vec{a}$.If $\vec{\beta}=\vec{\beta}_1+\vec{\beta}_2$, then the value of $5 \vec{\beta}_2 \cdot(\hat{i}+\hat{j}+\hat{k})$ is [JEE MAINS 2023]

Solution


$
\begin{aligned}
& \vec{\beta}_1=\frac{(\vec{\alpha} \cdot \vec{\beta})}{|\vec{\alpha}|} \hat{\alpha} \\
& =\left(\frac{4+6-20}{\sqrt{16+9+25}}\right) \frac{(4,3,5)}{\sqrt{50}} \\
& =\frac{-10}{50}(4,3,5) \\
& \vec{\beta}_1=\frac{(-4,-3,-5)}{5} \\
& \vec{\beta}_1+\vec{\beta}_2-=(1,2,-4) \\
& \beta_2=\left(1+\frac{4}{5}, 2+\frac{3}{5},-4+1\right) \\
& \beta_2=\left(\frac{9}{5}, \frac{13}{5},-3\right) \\
& \therefore 5 \beta_2=(9,13,-15) \\
& \therefore 5 \beta_2 \cdot(1,1,1)=9+13-15 \\
& =7
\end{aligned}
$

Hence, the answer is 7

Example 3: If $\mathrm{a}^{\prime}=\hat{\imath}+2 k, b=\hat{\imath}+\hat{\jmath}+k, \vec{c}=7 \hat{\imath}-3 \hat{\jmath}+4 k, \mathrm{r}^{\prime} \times \mathrm{b}+\mathrm{b} \times \mathrm{c}^{\prime}=0$ and $\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{a}}=0$. Then $\vec{r} \cdot \vec{c}$ is equal to
Solution

$
\begin{aligned}
& \vec{r} \times \vec{b}+\vec{b} \times \vec{c}=0 \\
& \Rightarrow \vec{r} \times \vec{b}-\vec{c} \times \vec{b}=0 \\
& \Rightarrow(\vec{r}-\vec{c}) \times \vec{b}=0 \\
& \vec{r}-\vec{c} \| \vec{b} \\
& \vec{r}-\vec{c}=\lambda \vec{b} \\
& \vec{r}=\lambda \vec{b}+\vec{c} \\
& =\lambda(i+j+k)+(7 i-3 j+4 k) \\
& =\mathrm{i}(\lambda+7)+j(\lambda-3)+\mathrm{k}(\lambda+4) \\
& \vec{r} \cdot \vec{a}=0 \\
& \Rightarrow(7+\lambda)+2(\lambda+4)=0 \\
& \Rightarrow 3 \lambda=-15 \Rightarrow \lambda=-5 \\
& \therefore \vec{r}=2 \mathrm{i}-8 \mathrm{j}-\mathrm{k} \\
& \overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{c}}=(2 \mathrm{i}-8 \mathrm{j}-\mathrm{k}) \cdot(7 \mathrm{i}-3 \mathrm{j}+4 \mathrm{k}) \\
& =14+24-4=34
\end{aligned}
$

Hence, the answer is 34

Example 4: Let $\vec{a}=\hat{i}+2 \hat{j}-\hat{k}, \vec{b}=\hat{i}-2 \hat{j}$ and $\vec{c}=\hat{i}-\hat{j}-\hat{k}$ be three given vectors. If $\vec{r}$ is a vector such that $\vec{r}$ is a vector such that $\vec{r} \times \vec{a}=\vec{c} \times \vec{a}$ and $\vec{r} \cdot \vec{b}=0$, then $\vec{r} \cdot \vec{a}$ is equal to
Solution

$
\begin{aligned}
& (\vec{r}-\vec{c}) \times \vec{a}=0 \\
& \Rightarrow \vec{r}=\vec{c}+\lambda \vec{a}
\end{aligned}
$

Now, $0=\vec{b} \cdot \vec{c}+\lambda \vec{a} \cdot \vec{b}$

$
\Rightarrow \lambda=\frac{-\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}=-\frac{2}{-1}=2
$

So, $\vec{r} \cdot \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}+2 \mathrm{a}^2=12$
Hence, the answer is 12

Example 5: The area (in sq. units) of the parallelogram whose diagonals are along the vectors $8 \hat{i}-6 \hat{j}$ and $3 \hat{i}+4 \hat{j}-12 \hat{k}$,
[JEE MAINS 2017]
Solution: Area of parallelogram $=\frac{1}{2}|\vec{a} \times \vec{b}|$
where $\vec{a}$ and $\vec{b}$ are diagonals

$
\begin{aligned}
& =\frac{1}{2}\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
8 & -6 & 0 \\
3 & 4 & -12
\end{array}\right| \\
& =\left|\frac{1}{2}(72 \hat{i}+96 \hat{j}+50 \hat{k})\right| \\
& =|36 \hat{i}+48 \hat{j}+25 \hat{k}| \\
& \text { magnitude }=\sqrt{36^2+48^2+25^2} \\
& =65
\end{aligned}
$

Hence, the answer is 65

Frequently Asked Questions (FAQs)

Q: How does the scalar triple product help in determining the handedness of a coordinate system?
A:
The scalar triple product i · (j × k) is positive for a right-handed coordinate system and negative for a left-handed one. Geometrically, this represents whether the shortest rotation from j to k is in the same direction as i (right-handed) or opposite to i (left-handed).
Q: What is the geometrical significance of the cross product being anticommutative?
A:
The anticommutative property of cross products (a × b = -b × a) geometrically means that changing the order of vectors in a cross product reverses the direction of the resulting vector while maintaining its magnitude. This is related to the right-hand rule for determining cross product direction.
Q: How does the dot product relate to the concept of orthogonal projections in linear algebra?
A:
The dot product is fundamental in calculating orthogonal projections. Geometrically, the formula for the orthogonal projection of a onto b, (a · b / |b|²)b, represents the component of a that is parallel to b, scaled by the unit vector in the direction of b.
Q: What is the geometrical interpretation of the vector form of the distributive property of cross products?
A:
The distributive property a × (b + c) = a × b + a × c geometrically means that the area of the parallelogram formed by a and the sum of b and c is equal to the sum of the areas of parallelograms formed by a with b and a with c separately.
Q: What is the geometrical significance of the vector rejection being perpendicular to the projection?
A:
The vector rejection of a onto b is always perpendicular to the projection of a onto b. Geometrically, this forms a right triangle where the original vector a is the hypotenuse, and the projection and rejection are the other two sides.
Q: What is the geometrical significance of the vector triple product being zero?
A:
If the vector triple product a × (b × c) is zero, it geometrically indicates that the three vectors are coplanar. This means that vector a lies in the plane formed by vectors b and c, or that all three vectors are parallel or zero.
Q: How does the scalar triple product change with cyclic permutation of vectors?
A:
The scalar triple product a · (b × c) remains unchanged under cyclic permutation of vectors (a · (b × c) = b · (c × a) = c · (a × b)). Geometrically, this represents that the volume of the parallelepiped remains the same regardless of which vector is considered as the height.
Q: How does the cross product help in determining the direction of magnetic force?
A:
In physics, the magnetic force on a moving charged particle is given by the cross product of its velocity and the magnetic field vectors. Geometrically, this means the force is perpendicular to both the velocity and the magnetic field, following the right-hand rule.
Q: What is the geometrical interpretation of the vector form of Lagrange's identity?
A:
Lagrange's identity |a × b|² = |a|²|b|² - (a · b)² geometrically relates the area of the parallelogram formed by two vectors (left side) to the difference between the product of their squared magnitudes and the square of their dot product (right side).
Q: How does the dot product relate to the law of cosines in trigonometry?
A:
The dot product formula a · b = |a||b|cos θ is a generalization of the law of cosines. Geometrically, it relates the angle between two vectors to their magnitudes and the projection of one onto the other, similar to how the law of cosines relates the sides of a triangle to its angles.