Imagine trying to find the volume of a slanted box in 3D space where none of the edges are perpendicular. That’s exactly where the Scalar Triple Product comes into play. The Scalar Triple Product is a powerful concept in vector algebra that helps us calculate the volume of a parallelepiped formed by three vectors, check the coplanarity of vectors, and understand their spatial orientation. In this article on Scalar Triple Product, we will explore its definition, formula, geometrical interpretation, properties, and practical examples, making it easy to grasp and highly useful for exams like JEE and other competitive tests.
This Story also Contains
The Scalar Triple Product, also known as the mixed product or box product, is defined as the dot product of one vector with the cross product of the other two vectors. It is one of the most important concepts in vector algebra and is mainly used to find the volume of a parallelepiped, test coplanarity of vectors, and understand the spatial orientation of three vectors.
If $\vec{a}, \vec{b}$ and $\vec{c}$ are any three vectors, then their scalar triple product is defined as
$\vec{a}\cdot(\vec{b}\times\vec{c})$
and it is denoted by
$[\vec{a}\ \vec{b}\ \vec{c}]$
The scalar triple product can be evaluated using any of the following equivalent forms:
$(\vec{a}\times\vec{b})\cdot\vec{c}
=\vec{a}\cdot(\vec{b}\times\vec{c})
=\vec{b}\cdot(\vec{c}\times\vec{a})
=\vec{c}\cdot(\vec{a}\times\vec{b})$
In symbolic notation:
$[\vec{a}\ \vec{b}\ \vec{c}]
=[\vec{b}\ \vec{c}\ \vec{a}]
=[\vec{c}\ \vec{a}\ \vec{b}]
=-[\vec{b}\ \vec{a}\ \vec{c}]
=-[\vec{c}\ \vec{b}\ \vec{a}]$
This shows that:
Scalar triple product remains the same under cyclic permutation.
It changes sign when any two vectors are interchanged.
The brackets are usually written without parentheses because the dot product cannot be evaluated before the cross product. A dot product of a scalar with a vector is not defined, so ambiguity never arises.
Let $\vec{a}=a_1\hat{i}+a_2\hat{j}+a_3\hat{k}$
$\vec{b}=b_1\hat{i}+b_2\hat{j}+b_3\hat{k}$
$\vec{c}=c_1\hat{i}+c_2\hat{j}+c_3\hat{k}$
Then, $[\vec{a}\ \vec{b}\ \vec{c}] = (\vec{a}\times\vec{b})\cdot\vec{c}$
First find $\vec{a}\times\vec{b}$:
$\vec{a}\times\vec{b}
=\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3
\end{vmatrix}$
Now dot it with $\vec{c}$:
$[\vec{a}\ \vec{b}\ \vec{c}]
=\begin{vmatrix}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{vmatrix}$
Hence, the scalar triple product is numerically equal to the determinant formed by the components of $\vec{a}$, $\vec{b}$ and $\vec{c}$.
This determinant form is extremely useful for calculations and competitive exams.
We have provided below the useful and important properties of scalar triple product:
$[m\vec{a}\ \vec{b}\ \vec{c}]
=m[\vec{a}\ \vec{b}\ \vec{c}]$
where $m$ is a scalar.
$[m_1\vec{a}\ m_2\vec{b}\ m_3\vec{c}]
=m_1m_2m_3[\vec{a}\ \vec{b}\ \vec{c}]$
where $m_1, m_2, m_3$ are scalars.
$[\vec{a}+\vec{b}\ \vec{c}\ \vec{d}]
=[\vec{a}\ \vec{c}\ \vec{d}]
+[\vec{b}\ \vec{c}\ \vec{d}]$
This shows linearity of the scalar triple product in each vector.

The necessary and sufficient condition for three non-zero, non-collinear vectors $\vec{a}$, $\vec{b}$ and $\vec{c}$ to be coplanar is:
$[\vec{a}\ \vec{b}\ \vec{c}]=0$
If the scalar triple product is zero, the volume of the parallelepiped formed by the three vectors is zero, which means all three vectors lie in the same plane.
The geometrical interpretation of the scalar triple product gives it a powerful physical meaning. It represents the volume of the parallelepiped formed by three vectors in space. This is why the scalar triple product is widely used in 3D geometry, vector algebra, and physics.
Let the vectors $\vec{a}$, $\vec{b}$, and $\vec{c}$ represent the edges $OA$, $OB$, and $OC$ of a parallelepiped respectively.

The vector $\vec{b}\times\vec{c}$ is perpendicular to the plane formed by $\vec{b}$ and $\vec{c}$.
Let:
$\theta$ be the angle between $\vec{b}$ and $\vec{c}$
$\alpha$ be the angle between $\vec{a}$ and $\vec{b}\times\vec{c}$
$\hat{n}$ be the unit vector along $\vec{b}\times\vec{c}$
Then,
$\vec{b}\times\vec{c}
=|\vec{b}||\vec{c}|\sin\theta \hat{n}$
Now compute the scalar triple product:
$[\vec{a}\ \vec{b}\ \vec{c}]
=\vec{a}\cdot(\vec{b}\times\vec{c})$
$=\vec{a}\cdot(|\vec{b}||\vec{c}|\sin\theta \hat{n})$
$=|\vec{b}||\vec{c}|\sin\theta (\vec{a}\cdot\hat{n})$
But,
$\vec{a}\cdot\hat{n}
=|\vec{a}|\cos\alpha$
So,
$[\vec{a}\ \vec{b}\ \vec{c}]
=|\vec{a}|\cos\alpha |\vec{b}||\vec{c}|\sin\theta$
Notice that:
$|\vec{b}||\vec{c}|\sin\theta$ is the area of the base (parallelogram formed by $\vec{b}$ and $\vec{c}$)
$|\vec{a}|\cos\alpha$ is the height of the parallelepiped
Therefore,
$[\vec{a}\ \vec{b}\ \vec{c}]
=\text{(Area of Base)} \times \text{(Height)}$
$=\text{Volume of the parallelepiped}$
A tetrahedron is a pyramid having a triangular base. Therefore

$
\therefore \quad \text { Volume }=\frac{1}{6}\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]
$
If $\vec{a}, \vec{b}$ and $\vec{c}$ are vectors
1) $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}), \vec{c}=\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$ i.e. position of the dot and the cross can be interchanged without altering the product.
2) $\vec{a}, \vec{b}$ and $\vec{c}$ in that order form a right-handed system if $[\vec{a} \quad \vec{b} \quad \vec{c}]>0$
$\vec{a}, \vec{b}$ and $\vec{c}$ in that order form a lett-handed system if $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]<0$
3) $[\vec{a} \vec{a} \vec{b}]=0(\vec{a}$ is perpendicular to ( $\vec{a} \times \vec{b}), \vec{a} \cdot(\vec{a} \times \vec{b})=0)$
Example 1: Let $\vec{a}$ and $\vec{b}$ be two vectors such that $|\vec{a}|=1,\ |\vec{b}|=4$ and $\vec{a}\cdot\vec{b}=2$.
If $\vec{c}=(2\vec{a}\times\vec{b})-3\vec{b}$, find $\vec{b}\cdot\vec{c}$. [JEE MAINS 2023]
Solution:
$\vec{b}\cdot\vec{c}=\vec{b}\cdot\big((2\vec{a}\times\vec{b})-3\vec{b}\big)$
$=\vec{b}\cdot(2\vec{a}\times\vec{b})-3\vec{b}\cdot\vec{b}$
$=0-3|\vec{b}|^2$
$=-3\times16=-48$
Hence, $\vec{b}\cdot\vec{c}=-48$.
Example 2: If four distinct points with position vectors $\vec{a},\vec{b},\vec{c},\vec{d}$ are coplanar, then find $[\vec{a}\ \vec{b}\ \vec{c}]$. [JEE MAINS 2023]
Solution:
Since $\vec{a},\vec{b},\vec{c},\vec{d}$ are coplanar, the vectors
$\vec{b}-\vec{a},\ \vec{c}-\vec{b},\ \vec{d}-\vec{c}$ are coplanar.
So, $[\vec{b}-\vec{a},\ \vec{c}-\vec{b},\ \vec{d}-\vec{c}]=0$
$(\vec{b}-\vec{a})\cdot\big((\vec{c}-\vec{b})\times(\vec{d}-\vec{c})\big)=0$
On expansion and rearrangement,
$[\vec{a}\ \vec{b}\ \vec{c}]=[\vec{d}\ \vec{c}\ \vec{a}]+[\vec{b}\ \vec{d}\ \vec{a}]+[\vec{c}\ \vec{d}\ \vec{b}]$
Hence, the answer is
$[\vec{d}\ \vec{c}\ \vec{a}]+[\vec{b}\ \vec{d}\ \vec{a}]+[\vec{c}\ \vec{d}\ \vec{b}]$.
Example 3: Let $\vec{v}=\alpha\hat{i}+2\hat{j}-3\hat{k}$,
$\vec{w}=2\alpha\hat{i}+\hat{j}-\hat{k}$, and $\vec{u}$ be a vector such that $|\vec{u}|=\alpha>0$.
If the minimum value of $[\vec{u}\ \vec{v}\ \vec{w}]$ is $-\alpha\sqrt{3401}$ and $|\vec{u}\cdot\hat{i}|^2=\dfrac{m}{n}$, find $m+n$. [JEE MAINS 2023]
Solution:
$-\alpha\sqrt{1+34\alpha^2}=-\alpha\sqrt{3401}$
$\Rightarrow 1+34\alpha^2=3401$
$\Rightarrow \alpha^2=100$
$\Rightarrow \alpha=10$
For minimum value, $\vec{u}$ is parallel to $\vec{v}\times\vec{w}$.
$\vec{v}\times\vec{w}=\hat{i}-50\hat{j}-30\hat{k}$
$\vec{u}=\lambda(\hat{i}-50\hat{j}-30\hat{k})$
$|\vec{u}|=10$
$|\lambda|\sqrt{3401}=10$
$|\lambda|=\dfrac{10}{\sqrt{3401}}$
$\vec{u}=\pm\dfrac{10}{\sqrt{3401}}(\hat{i}-50\hat{j}-30\hat{k})$
$\vec{u}\cdot\hat{i}=\pm\dfrac{10}{\sqrt{3401}}$
$|\vec{u}\cdot\hat{i}|^2=\dfrac{100}{3401}$
So, $m=100,\ n=3401$
$m+n=3501$
Hence, the answer is $3501$.
Example 4: If $\vec{a}=2\hat{i}+\hat{j}+3\hat{k}$,
$\vec{b}=3\hat{i}+3\hat{j}+\hat{k}$, $\vec{c}=c_1\hat{i}+c_2\hat{j}+c_3\hat{k}$ are coplanar and $\vec{a}\cdot\vec{c}=5$,
$\vec{b}\perp\vec{c}$, find $122(c_1+c_2+c_3)$. [JEE MAINS 2022]
Solution:
From $\vec{a}\cdot\vec{c}=5$,
$2c_1+c_2+3c_3=5$ ...(1)
From $\vec{b}\perp\vec{c}$,
$3c_1+3c_2+c_3=0$ ...(2)
Coplanarity condition:
$\begin{vmatrix}
c_1 & c_2 & c_3\\
2 & 1 & 3\\
3 & 3 & 1
\end{vmatrix}=0$
$-8c_1+7c_2+3c_3=0$ ...(3)
Solving (1), (2), and (3),
$c_1=\dfrac{5}{61}$,
$c_2=-\dfrac{85}{122}$,
$c_3=-3(c_1+c_2)$
$c_1+c_2+c_3=-2(c_1+c_2)$
$=-2\left(\dfrac{5}{61}-\dfrac{85}{122}\right)$
$=\dfrac{75}{61}$
$122(c_1+c_2+c_3)=122\times\dfrac{75}{61}=150$
Hence, the answer is $150$.
Example 5: The volume of a parallelepiped whose coterminous edges are $\vec{u}=\hat{i}+\hat{j}+\lambda\hat{k}$,
$\vec{v}=\hat{i}+\hat{j}+3\hat{k}$,
$\vec{w}=2\hat{i}+\hat{j}+\hat{k}$ is $1$ cubic unit.
If $\theta$ is the angle between $\vec{u}$ and $\vec{w}$, find $\cos\theta$.
Solution:
$|\vec{u}\ \vec{v}\ \vec{w}|=1$
$\begin{vmatrix}
1 & 1 & \lambda\\
1 & 1 & 3\\
2 & 1 & 1
\end{vmatrix}=\pm1$
$-\lambda+3=\pm1$
$\Rightarrow \lambda=2\ \text{or}\ 4$
Taking $\lambda=4$,
$\vec{u}=\hat{i}+\hat{j}+4\hat{k}$
$\vec{w}=2\hat{i}+\hat{j}+\hat{k}$
$\vec{u}\cdot\vec{w}=2+1+4=7$
$|\vec{u}|=\sqrt{6}$,
$|\vec{w}|=\sqrt{6}$
$\cos\theta=\dfrac{7}{\sqrt{6}\sqrt{6}}=\dfrac{7}{6\sqrt{3}}$
Hence, the answer is
$\dfrac{7}{6\sqrt{3}}$.
This section presents a carefully organized list of important topics from Vector Algebra that are closely connected to the vector triple product.
Addition of Vectors and Subtraction of Vectors
Multiplication Of Vectors by a Scalar Quantity
Components Of A Vector Along And Perpendicular To Another Vector
This section provides a complete collection of NCERT-based resources to help you study Vector Algebra in a structured and stress-free way. It includes clear notes, detailed solutions, and exemplar problems that follow the NCERT syllabus strictly, making it easier to build strong fundamentals, improve conceptual clarity, and prepare confidently for board exams as well as competitive exams.
NCERT Maths Class 12th Notes for Chapter 10 - Vector Algebra
NCERT Maths Class 12th Solutions for Chapter 10 - Vector Algebra
NCERT Maths Class 12th Exemplar Solutions for Chapter 10 - Vector Algebra
This section brings you a focused set of practice questions based on the Scalar Triple Product, carefully designed to help you understand its geometric meaning, master its formulas, and apply its properties effectively. The problems range from basic applications to exam-level questions, so you can build confidence and sharpen your accuracy with regular practice.
Scalar Triple Product Of Vectors- Practice Question MCQ
We have provided below the practice questions based on the topics related to Scalar Triple Product:
Frequently Asked Questions (FAQs)
The scalar triple product tells us the volume of a 3D shape formed by three vectors. If you place the vectors tail-to-tail, they form a parallelepiped, and the scalar triple product gives its volume (with sign).
Because even though three vectors are involved, the final answer is just a number, not a vector. That’s why it’s called scalar.
The most common form is $\vec{a}\cdot(\vec{b}\times\vec{c})$
It can also be written using a determinant of a $3\times3$ matrix of components.
The sign tells the orientation of the vectors:
Positive → right-handed system
Negative → left-handed system
Zero → vectors are coplanar
So it carries geometric information, not just volume.
It becomes zero when the three vectors lie in the same plane. In that case, no 3D volume is formed, so the “box” collapses into a flat shape.