Half Angle Formula

Half Angle Formula

Komal MiglaniUpdated on 02 Jul 2025, 07:31 PM IST

The half-angle formula is used to find the value of the trigonometric ratios like 22.5°, 15°. half-angle of trigonometric functions with the help of an angle. These formulae can be derived from the reduction formulas and we can use them when we have an angle that is half the size of a special angle. It is used to find the exact value of the trigonometric ratios of 15 (half of 30 degrees), 22.5( half of 45 degrees), and so on.

This Story also Contains

  1. What are Half Angle Formula ?
  2. Derivation of Half Angle Formulas
  3. Solved Example Based on Half Angle Formula
Half Angle Formula
Half Angle Formula

In this article, we will cover the concept of the half-angle formula. This concept falls under the broader category of Trigonometry, which is a crucial Chapter in class 11 Mathematics. It is not only essential for board exams but also for competitive exams like the Joint Entrance Examination(JEE Main) and other entrance exams such as SRMJEE, BITSAT, WBJEE, BCECE, and more.

What are Half Angle Formula ?

The half-angle formula is used to find the value of the trigonometric ratios of the angles like 22.5° (which is half of the angle 45°), 15° (which is half of the angle 30°), etc.

Half Angle Formulas

The half-angle formula can be derived with the help of the reduction formula.
1. $\sin \left(\frac{\alpha}{2}\right)= \pm \sqrt{\frac{1-\cos \alpha}{2}}$
2. $\cos \left(\frac{\alpha}{2}\right)= \pm \sqrt{\frac{1+\cos \alpha}{2}}$
3. $\tan \left(\frac{\alpha}{2}\right)= \pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}$

Note that the half-angle formulas are preceded by a $\pm$ sign. This does not mean that both positive and negative expressions are valid. Rather, only one sign needs to be taken and that depends on the quadrant in which $\alpha / 2$ lies.

Derivation of Half Angle Formulas

The half-angle formula can be derived with the help of the reduction formula.
Reduction formulas are:
$\sin ^2 \theta=\frac{1-\cos (2 \theta)}{2}$
$\cos ^2 \theta=\frac{1+\cos (2 \theta)}{2}$
$\tan ^2 \theta=\frac{1-\cos (2 \theta)}{1+\cos (2 \theta)}$

Derivation of Half Angle Formula for Sine

The half-angle formula for sine is derived as follows:

$
\begin{aligned}
\sin ^2 \theta & =\frac{1-\cos (2 \theta)}{2} \\
\sin ^2\left(\frac{\alpha}{2}\right) & =\frac{1-\cos \left(2 \cdot \frac{\alpha}{2}\right)}{2} \\
& =\frac{1-\cos \alpha}{2} \\
\sin \left(\frac{\alpha}{2}\right) & = \pm \sqrt{\frac{1-\cos \alpha}{2}}
\end{aligned}
$

Derivation of Half Angle Formula for Cosine

To derive the half-angle formula for cosine, we have

$
\begin{aligned}
\cos ^2 \theta & =\frac{1+\cos (2 \theta)}{2} \\
\cos ^2\left(\frac{\alpha}{2}\right) & =\frac{1+\cos \left(2 \cdot \frac{\alpha}{2}\right)}{2} \\
& =\frac{1+\cos \alpha}{2} \\
\cos \left(\frac{\alpha}{2}\right) & = \pm \sqrt{\frac{1+\cos \alpha}{2}}
\end{aligned}
$

Derivation of Half Angle Formula for Tangent

For the tangent identity, we have

$
\begin{aligned}
\tan ^2 \theta & =\frac{1-\cos (2 \theta)}{1+\cos (2 \theta)} \\
\tan ^2\left(\frac{\alpha}{2}\right) & =\frac{1-\cos \left(2 \cdot \frac{\alpha}{2}\right)}{1+\cos \left(2 \cdot \frac{\alpha}{2}\right)} \\
& =\frac{1-\cos \alpha}{1+\cos \alpha} \\
\tan \left(\frac{\alpha}{2}\right) & = \pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}
\end{aligned}
$

Derivation of Half Angle Formula Using Semiperimeter

We can also represent the half-angle formula using the side of the triangle.

Derivation of Half-Angle Formula for Sine

$
\begin{aligned}
& \sin \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}} \\
& \sin \frac{B}{2}=\sqrt{\frac{(s-a)(s-c)}{a c}} \\
& \sin \frac{C}{2}=\sqrt{\frac{(s-a)(s-b)}{a b}}
\end{aligned}
$

We know that,

$
\cos \mathrm{A}=1-2 \sin ^2 \frac{\mathrm{A}}{2} \Rightarrow \sin ^2 \frac{\mathrm{A}}{2}=\frac{1-\cos \mathrm{A}}{2}
$

Now, for any $\triangle A B C, \cos A=\frac{b^2+c^2-a^2}{2 b c}$

Using the above two formulas

In a similar way, we can derive other formulas.

$
\begin{aligned}
& \sin ^2 \frac{A}{2}=\frac{1}{2}\left[1-\frac{b^2+c^2-a^2}{2 b c}\right] \\
& =\frac{1}{2}\left[\frac{2 b c-b^2-c^2+a^2}{2 b c}\right] \\
& =\frac{1}{2}\left[\frac{a^2-(b-c)^2}{2 b c}\right] \\
& =\frac{(\mathrm{a}-\mathrm{b}+\mathrm{c})(\mathrm{a}+\mathrm{b}-\mathrm{c})}{4 \mathrm{bc}} \\
& =\frac{(2 \mathrm{~s}-2 \mathrm{~b})(2 \mathrm{~s}-2 \mathrm{c})}{4 \mathrm{bc}} \quad[\because \mathrm{a}+\mathrm{b}+\mathrm{c}=2 \mathrm{~s}] \\
& \Rightarrow \sin ^2 \frac{\mathrm{A}}{2}=\frac{(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}{\mathrm{bc}} \\
& \text { As } 0<\frac{\mathrm{A}}{2}<\frac{\pi}{2} \text {, so } \sin \frac{\mathrm{A}}{2}>0 \\
& \sin \frac{\mathrm{A}}{2}=\sqrt{\frac{(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}{\mathrm{bc}}}
\end{aligned}
$

Derivation of Half-Angle Formula for Cosine

$
\begin{aligned}
& \cos \frac{\mathrm{A}}{2}=\sqrt{\frac{(\mathrm{s})(\mathrm{s}-\mathrm{a})}{\mathrm{bc}}} \\
& \cos \frac{\mathrm{B}}{2}=\sqrt{\frac{(\mathrm{s})(\mathrm{s}-\mathrm{b})}{\mathrm{ac}}} \\
& \cos \frac{\mathrm{C}}{2}=\sqrt{\frac{(\mathrm{s})(\mathrm{s}-\mathrm{c})}{\mathrm{ab}}}
\end{aligned}
$

We know that

$
\begin{aligned}
& \cos \mathrm{A}=2 \cos ^2 \frac{\mathrm{A}}{2}-1 \Rightarrow \cos ^2 \frac{\mathrm{A}}{2}=\frac{1+\cos \mathrm{A}}{2} \\
& \text { And for any } \triangle \mathrm{ABC}, \cos \mathrm{A}=\frac{\mathrm{b}^2+\mathrm{c}^2-\mathrm{a}^2}{2 \mathrm{bc}}
\end{aligned}
$

Using the above two formulas

$
\begin{aligned}
& \cos ^2 \frac{A}{2}=\frac{1}{2}\left[1+\frac{b^2+c^2-a^2}{2 b c}\right] \\
&=\frac{1}{2}\left[\frac{2 \mathrm{bc}+\mathrm{b}^2+\mathrm{c}^2-\mathrm{a}^2}{2 \mathrm{bc}}\right] \\
&=\frac{1}{2}\left[\frac{\left.(\mathrm{b}+\mathrm{c})^2-\mathrm{a}^2\right]}{2 \mathrm{bc}}\right] \\
&=\frac{(\mathrm{b}+\mathrm{c}+\mathrm{a})(\mathrm{b}+\mathrm{c}-\mathrm{a})}{4 \mathrm{bc}} \\
&=\frac{(\mathrm{b}+\mathrm{c}+\mathrm{a})(\mathrm{a}+\mathrm{b}+\mathrm{c}-2 \mathrm{a})}{4 \mathrm{bc}} \\
&=\frac{(2 \mathrm{~s})(2 \mathrm{~s}-2 \mathrm{a})}{4 \mathrm{bc}} \quad[\because \mathrm{a}+\mathrm{b}+\mathrm{c}=2 \mathrm{~s}] \\
& \Rightarrow \cos ^2 \frac{\mathrm{A}}{2}=\frac{(\mathrm{s})(\mathrm{s}-\mathrm{a})}{\mathrm{bc}}
\end{aligned}
$

As $0<\frac{\mathrm{A}}{2}<\frac{\pi}{2}$, so $\cos \frac{\mathrm{A}}{2}>0$

$
\cos \frac{\mathrm{A}}{2}=\sqrt{\frac{(\mathrm{s})(\mathrm{s}-\mathrm{a})}{\mathrm{bc}}}
$

In a similar way, we can derive other formulas

Derivation of Half Angle Formula for tan

This half-angle formula can be proved using tan x = sin x/cos x, and using the half-angle formula of sine and cosine.

$
\begin{aligned}
& \tan \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \\
& \tan \frac{B}{2}=\sqrt{\frac{(s-a)(s-c)}{s(s-b)}} \\
& \tan \frac{C}{2}=\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}
\end{aligned}
$

This half-angle formula can be proved using $\tan x= \frac{\sin x}{\cos x}$ and using the half-angle formula of sine and cosine.

Recommended Video Based on Half Angle Formula


Solved Example Based on Half Angle Formula

Example 1: If $\tan \left(\frac{\pi}{9}\right), x, \tan \left(\frac{7 \pi}{18}\right)$ are in arithmetic progression and $\tan \left(\frac{\pi}{9}\right), \mathrm{y}, \tan \left(\frac{5 \pi}{18}\right)$ are also in arithmetic progression, then $|x-2 y|$ is equal to [JEE MAINS 2021]
Solution

$
\begin{aligned}
& x=\frac{\tan \left(\frac{\pi}{9}\right)+\tan \left(\frac{7 \pi}{18}\right)}{2} \text { and } \\
& y=\frac{\tan \left(\frac{\pi}{9}\right)+\tan \left(\frac{5 \pi}{18}\right)}{2}
\end{aligned}
$

$
\begin{aligned}
& \therefore x-2 y=\frac{1}{2}\left[\tan \left(\frac{\pi}{9}\right)+\tan \left(\frac{7 \pi}{18}\right)-2 \tan \left(\frac{\pi}{9}\right)-2 \tan \left(\frac{5 \pi}{18}\right)\right] \\
& =\frac{1}{2}\left[\tan \left(\frac{7 \pi}{18}\right)-\tan \left(\frac{\pi}{9}\right)-2 \tan \left(\frac{5 \pi}{18}\right)\right] \\
& =\frac{1}{2}\left[\tan \left(\frac{\pi}{2}-\frac{\pi}{9}\right)-\tan \left(\frac{\pi}{9}\right)-2 \tan \left(\frac{5 \pi}{18}\right)\right] \\
& =\frac{1}{2}\left[\cot \left(\frac{\pi}{9}\right)-\tan \left(\frac{\pi}{9}\right)-2 \tan \left(\frac{\pi}{2}-\frac{2 \pi}{9}\right)\right] \\
& =\frac{1}{2}\left[\frac{\cos \left(\frac{\pi}{9}\right)}{\sin \left(\frac{\pi}{9}\right)}-\frac{\sin \left(\frac{\pi}{9}\right)}{\cos \left(\frac{\pi}{9}\right)}-2 \cot \left(\frac{2 \pi}{9}\right)\right] \\
& =\frac{1}{2}\left[\frac{2 \cos (2 \pi / 9)}{\sin \left(\frac{2 \pi}{9}\right)}-2 \cot \left(\frac{2 \pi}{9}\right)\right] \\
& =0
\end{aligned}
$

Hence, the answer is 0

Example 2: The value of $2 \sin \left(\frac{\pi}{8}\right) \sin \left(\frac{2 \pi}{8}\right) \sin \left(\frac{3 \pi}{8}\right) \sin \left(\frac{5 \pi}{8}\right) \sin \left(\frac{6 \pi}{8}\right) \sin \left(\frac{7 \pi}{8}\right)$ is :
[JEE MAINS 2021]
Solution:

$
\begin{aligned}
& \text { As } \sin \left(\frac{5 \pi}{8}\right)=\sin \left(\pi-\frac{3 \pi}{8}\right)=\sin \left(\frac{3 \pi}{8}\right) \\
& \text { similarly } \sin \left(\frac{6 \pi}{8}\right)=\sin \left(\frac{2 \pi}{8}\right) \text { and } \sin \left(\frac{7 \pi}{8}\right)=\sin \left(\frac{\pi}{8}\right)
\end{aligned}
$

$\therefore$ Required value

$
\begin{aligned}
& =2 \cdot \sin ^2\left(\frac{\pi}{8}\right) \cdot \sin ^2\left(\frac{2 \pi}{8}\right) \cdot \sin ^2\left(\frac{3 \pi}{8}\right) \\
& =2 \cdot\left(\frac{1}{\sqrt{2}}\right)^2 \cdot \sin ^2\left(\frac{\pi}{8}\right) \cdot \sin ^2\left(\frac{3 \pi}{8}\right) \\
& =\sin ^2\left(\frac{\pi}{8}\right) \cdot \cos ^2\left(\frac{\pi}{8}\right) \\
& =\frac{4}{4} \sin ^2\left(\frac{\pi}{8}\right) \cdot \cos ^2\left(\frac{\pi}{8}\right) \\
& =\frac{1}{4}\left(\sin \left(\frac{\pi}{4}\right)\right)^2=\frac{1}{4} \cdot \frac{1}{2}=\frac{1}{8}
\end{aligned}
$

Hence, the answer is $1 / 8$

Example 3: If $\cos \alpha+\cos \beta=\frac{3}{2}$ and $\sin \alpha+\sin \beta=\frac{1}{2}$ and $\theta \quad$ is the arithmetic mean of $\alpha$ and $\beta$, then $\sin 2 \theta+\cos 2 \theta$ is equal to : [JEE MAINS 2015]
Solution:

Trigonometric Ratios of Submultiples of an Angle -

$
\begin{gathered}
\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^2 \theta} \\
\sin C+\sin D=2 \cdot \sin \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right) \\
\cos C+\cos D=2 \cdot \cos \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)
\end{gathered}
$

This shows the transformation formulae and double angle formulae.
Therefore,

$
\begin{aligned}
& \cos \alpha+\cos \beta=\frac{3}{2} \Rightarrow 2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}=\frac{3}{2} \\
& \sin \alpha+\sin \beta=\frac{1}{2} \Rightarrow 2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}=\frac{1}{2}
\end{aligned}
$

dividing (2) by (1), we get

$
\tan \frac{(\alpha+\beta)}{2}=\frac{1}{3} \Rightarrow \tan \theta=\frac{1}{3}
$

$
\begin{aligned}
& \Rightarrow \tan 2 \theta=\frac{2 \times \frac{1}{3}}{1-\frac{1}{9}}=\frac{3}{4} \\
& \Rightarrow \sin 2 \theta=\frac{3}{5}, \quad \cos 2 \theta=\frac{4}{5}
\end{aligned}
$

[By making a triangle]
Thus,

$
\Rightarrow \sin 2 \theta+\cos 2 \theta=\frac{7}{5}
$

Hence, the answer is $7 / 5$

Example 4: Let $\alpha, \beta$ be such that $\pi<\alpha-\beta<3 \pi$. If $\sin \alpha+\sin \beta=-21 / 65$, and
$\cos \alpha+\cos \beta=-27 / 65$ then the value of $\cos \frac{\alpha-\beta}{2}$ is :

Solution:

$\sin \alpha+\sin \beta=\frac{-21}{65} \Rightarrow 2 \sin \frac{(\alpha+\beta)}{2} \cos \frac{(\alpha-\beta)}{2}=\frac{-21}{65}$ $\qquad$

$
\cos \alpha+\cos \beta=\frac{-27}{65} \Rightarrow 2 \cos \frac{(\alpha+\beta)}{2} \cos \frac{(\alpha-\beta)}{2}=\frac{-21}{65}
$

Squaring and adding,

$
\begin{aligned}
& 4 \cos ^2 \frac{(\alpha-\beta)}{2}\left[\sin ^2 \frac{\alpha+\beta}{2}+\cos ^2 \frac{\alpha+\beta}{2}\right]=\frac{21^2+27^2}{65^2} \\
& \Rightarrow \cos ^2 \frac{(\alpha-\beta)}{2}=\frac{1170}{4 \times 4225} \Rightarrow \cos ^2 \frac{(\alpha-\beta)}{2}=\frac{1170}{4 \times 4225}=\frac{9}{130} \\
& \Rightarrow \cos \frac{(\alpha-\beta)}{2}=\frac{-3}{\sqrt{130}} \\
& {\left[\because \pi<\alpha-\beta<3 \pi \Rightarrow \frac{\pi}{2} \leq \frac{\alpha-\beta}{2} \leq \frac{3 \pi}{2} \Rightarrow \cos \left(\frac{\alpha-\beta}{2}\right)<0\right]} \\
& \text { Hence, the answer is }-\frac{3}{\sqrt{130}}
\end{aligned}
$

Example 5: Find the range of functions $\tan \frac{\alpha}{2} \cdot \tan \alpha$
Solution:

$
\begin{aligned}
& \quad \tan \frac{\alpha}{2} \cdot \tan \alpha=\left(\frac{1-\cos \alpha}{\sin \alpha}\right) \cdot \frac{\sin \alpha}{\cos \alpha} \\
& =\sec \alpha-1 \\
& \text { Range of } \sec \alpha(-\infty,-1] U [ 1, \infty) \\
& \text { Range of } f(\alpha) \text { is }(-\infty,-2] U [0, \infty)
\end{aligned}
$

Hence, the answer is $(-\infty,-2] U [0, \infty)$

Frequently Asked Questions (FAQs)

Q: How do half angle formulas relate to the concept of trigonometric identities?
A:
Half angle formulas are themselves trigonometric identities, and they can be used to derive or verify other identities. For example, the Pythagorean identity sin²(θ/2) + cos²(θ
Q: Can half angle formulas be used in solving trigonometric inequalities?
A:
Yes, half angle formulas can be useful in solving trigonometric inequalities, especially when the inequality involves half angles. By using these formulas, you can often transform the inequality into a more standard form involving full angles, which may be easier to solve. However, it's crucial to consider the domain restrictions and possible sign changes when applying these formulas in inequalities.
Q: Why is it important to understand the derivation of half angle formulas?
A:
Understanding the derivation of half angle formulas is crucial because it provides insight into the relationships between trigonometric functions and helps in remembering and applying the formulas correctly. The derivation process also reinforces important trigonometric concepts and identities, enhancing overall understanding of trigonometry. Moreover, the techniques used in these derivations can be applied to solve other trigonometric problems.
Q: How do half angle formulas relate to the concept of rational trigonometric functions?
A:
Half angle formulas play a role in creating rational trigonometric functions. For example, the tangent half angle formula tan(θ/2) = sin(θ)/(1+cos(θ)) expresses tan(θ/2) as a rational function of sin(θ) and cos(θ). This relationship is useful in various areas of mathematics, including integration techniques and solving certain types of differential equations.
Q: How do half angle formulas relate to the concept of periodicity in trigonometric functions?
A:
Half angle formulas highlight the relationship between the periodicity of full angle and half angle functions. While sin(θ) and cos(θ) have a period of 2π, sin(θ/2) and cos(θ/2) have a period of 4π. This doubling of the period is a direct result of halving the angle in the argument of the function, and it's an important consideration when graphing or analyzing these functions.
Q: Why is it sometimes necessary to use multiple half angle formulas in a single problem?
A:
In complex trigonometric problems, it's often necessary to use multiple half angle formulas because different parts of the problem may require different trigonometric ratios of the half angle. For example, you might need to find both sin(θ/2) and cos(θ/2) to solve a problem. Using multiple formulas allows you to approach the problem from different angles and verify your results.
Q: How do half angle formulas relate to the concept of symmetry in trigonometric functions?
A:
Half angle formulas reflect the symmetry properties of trigonometric functions. For instance, the fact that cos(θ/2) = ±√((1+cos(θ))/2) shows the even symmetry of cosine (cos(-θ) = cos(θ)), while the form of the sine half angle formula reflects sine's odd symmetry (sin(-θ) = -sin(θ)). Understanding these symmetries can help in choosing the correct sign in half angle calculations.
Q: Can half angle formulas be used in solving systems of trigonometric equations?
A:
Yes, half angle formulas can be very useful in solving systems of trigonometric equations, especially when the system involves both full angles and half angles. By using these formulas, you can often express all terms in the system using the same angle, making the system easier to solve. This technique is particularly helpful in more complex trigonometric problems and proofs.
Q: Can half angle formulas be used in complex number theory?
A:
Yes, half angle formulas can be extended to complex number theory. In fact, they play a role in de Moivre's formula and Euler's formula, which are fundamental in relating complex exponentials to trigonometric functions. These extensions of half angle formulas are crucial in many areas of advanced mathematics and physics.
Q: How do half angle formulas relate to trigonometric substitution in integration?
A:
Half angle formulas are often used in trigonometric substitution, a technique in integration. For instance, when integrating expressions involving √(1-x²), we might substitute x = sin(θ), which then leads to √(1-x²) = cos(θ). The half angle formulas can then be used to simplify the resulting trigonometric expressions, making the integration more manageable.