Imagine you are standing in front of a tall tower and you know its height, but you want to find the angle at which you are looking at the top. In such cases, inverse trigonometric functions are used to calculate that angle using the known height and distance. In class 12, you will learn about inverse trigonometric functions, inverse trigonometric functions formulas, domain and range of inverse trigonometric functions, and graphs of inverse trigonometric functions. You will also study differentiation of inverse trigonometric functions, integration of inverse trigonometric functions, and the derivative of inverse trigonometric functions. In this article, we will explain inverse trigonometric functions in simple language with examples, inverse trigonometric functions class 12 solutions, formulae, and notes to help you understand the topic easily in mathematics.
This Story also Contains
Inverse trigonometric functions help us find angles when the value of a trigonometric ratio is known. They play an important role in solving problems related to geometry, calculus, and real-life applications.
Inverse trigonometric functions are used to determine an angle from a given trigonometric value. For example, if $\sin \theta = \frac{1}{2}$, then $\theta = \sin^{-1}(\frac{1}{2})$. In inverse trigonometric functions class 12, you will learn how to apply inverse trigonometric functions formulas, understand the domain and range of inverse trigonometric functions, and interpret the graph of inverse trigonometric functions.
Inverse trigonometric functins are the reverse process of the trigonometric functions. In other words, the domain of the inverse function is the range of the original function and vice versa.
For example:
$\sin(\frac{\pi}{6}) = \frac{1}{2}$ ⇒ $\frac{\pi}{6} = \sin^{-1}(\frac{1}{2})$
$\cos(\pi) = -1$ ⇒ $\pi = \cos^{-1}(-1)$
$\tan(\frac{\pi}{4}) = 1$ ⇒ $\frac{\pi}{4} = \tan^{-1}(1)$
Arcsine ($\sin^{-1}$) – Inverse of the sine function
Arccosine ($\cos^{-1}$) – Inverse of the cosine function
Arctangent ($\tan^{-1}$) – Inverse of the tangent function
Arccotangent ($\cot^{-1}$) – Inverse of the cotangent function
Arcsecant ($\sec^{-1}$) – Inverse of the secant function
Arccosecant ($\csc^{-1}$) – Inverse of the cosecant function
These functions are covered in inverse trigonometric functions class 12 and include important formulas, domain and range explanations, and graphs.
Understanding the domain and range of inverse trigonometric functions is essential for solving problems. Below are the domains and ranges for each inverse function.
To define inverse trigonometric functions properly, the original trigonometric functions must be one-one and onto in the selected domain and range. For example, the sine function is defined for all real numbers, but its inverse is only defined when the domain is restricted to $[-\frac{\pi}{2}, \frac{\pi}{2}]$ and the range to $[-1, 1]$.
Thus,
The domain of $y = \sin^{-1}(x)$ is $[-1, 1]$
The range of $y = \sin^{-1}(x)$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$
The same process applies to other functions like cosine, tangent, secant, etc.
By convention, the domain of inverse trigonometric functions is chosen to ensure the function is one-one and onto. For example, the principal domain for $y = \sin(x)$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$, which makes $y = \sin^{-1}(x)$ well-defined.
Inverse Trigonometric Function | Domain | Range |
---|---|---|
$\sin^{-1}(x)$ (Arcsine) | $[-1, 1]$ | $[-\frac{\pi}{2}, \frac{\pi}{2}]$ |
$\cos^{-1}(x)$ (Arccosine) | $[-1, 1]$ | $[0, \pi]$ |
$\tan^{-1}(x)$ (Arctangent) | All real numbers | $(-\frac{\pi}{2}, \frac{\pi}{2})$ |
$\cot^{-1}(x)$ (Arccotangent) | All real numbers | $(0, \pi)$ |
$\sec^{-1}(x)$ (Arcsecant) | $(-\infty, -1] \cup [1, +\infty)$ | $[0, \pi], y \neq \frac{\pi}{2}$ |
$\csc^{-1}(x)$ (Arccosecant) | $(-\infty, -1] \cup [1, +\infty)$ | $[-\frac{\pi}{2}, \frac{\pi}{2}], y \neq 0$ |
The graphs of inverse trigonometric functions are given as below:
$y=\sin ^{-1}(x)$
$\sin ^{-1}(x)$ is the inverse of the trignometric function $\sin x$.
$\mathrm{y}=\sin \mathrm{x}, \mathrm{x} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $\mathrm{y} \in[-1,1]$
$y=\cos ^{-1}(x)$
$\cos ^{-1}(x)$ is the inverse of $\cos x$
$y=\tan ^{-1}(x)$
$\tan ^{-1}(x)$ is the inverse of $\tan x$.
$y=\operatorname{cosec}^{-1}(x)$
$\operatorname{cosec}^{-1}(x)$ is the inverse of $\operatorname{cosec} x$.
$y=\sec ^{-1}(x)$
$\sec ^{-1}(x)$ is the inverse of $\sec x$.
$y=\cot ^{-1}(x)$
$\cot ^{-1}(x)$ is the inverse of $\cot x$.
This section covers important inverse trigonometric functions formulas, including formulas for negative functions, reciprocal functions, complementary functions, sum and difference of angles, multiple angles, as well as differentiation and integration formulas. These formulas are essential for inverse trigonometric functions class 12 and are helpful in solving calculus problems.
$\sin^{-1}(-x) = -\sin^{-1}(x)$, for all $x \in [-1,1]$
$\tan^{-1}(-x) = -\tan^{-1}(x)$, for all $x \in \mathbb{R}$
$\csc^{-1}(-x) = -\csc^{-1}(x)$, for all $x \in \mathbb{R} - (-1,1)$
$\cos^{-1}(-x) = \pi - \cos^{-1}(x)$, for all $x \in [-1,1]$
$\sec^{-1}(-x) = \pi - \sec^{-1}(x)$, for all $x \in \mathbb{R} - (-1,1)$
$\cot^{-1}(-x) = \pi - \cot^{-1}(x)$, for all $x \in \mathbb{R}$
$\sin^{-1}\left(\frac{1}{x}\right) = \csc^{-1}(x)$, for all $x \in (-\infty,-1] \cup [1,\infty)$
$\cos^{-1}\left(\frac{1}{x}\right) = \sec^{-1}(x)$, for all $x \in (-\infty,-1] \cup [1,\infty)$
$\tan^{-1}\left(\frac{1}{x}\right) = \begin{cases}\cot^{-1} x, & x>0\ -\pi + \cot^{-1} x, & x<0\end{cases}$
The sum of complementary functions results in a right angle:
$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$, for all $x \in [-1,1]$
$\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$, for all $x \in \mathbb{R}$
$\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}$, for all $x \in (-\infty,-1] \cup [1,\infty)$
Below are the sum and difference formulas of inverse trigonometric functions like $\tan^{-1}$, $\sin^{-1}$, and $\cos^{-1}$. These formulas help in simplifying expressions and solving equations in inverse trigonometric functions class 12.
$\tan^{-1} x + \tan^{-1} y = \begin{cases} \tan^{-1}\left(\frac{x+y}{1-xy}\right), & x>0, y>0, xy<1\\ \pi + \tan^{-1}\left(\frac{x+y}{1-xy}\right), & x>0, y>0, xy>1\\ -\pi + \tan^{-1}\left(\frac{x+y}{1-xy}\right), & x<0, y<0, xy>1 \end{cases}$
$\tan^{-1} x - \tan^{-1} y = \begin{cases} \tan^{-1}\left(\frac{x-y}{1+xy}\right), & xy > -1\\ \pi + \tan^{-1}\left(\frac{x-y}{1+xy}\right), & x>0, y<0, xy<-1\\ -\pi + \tan^{-1}\left(\frac{x-y}{1+xy}\right), & x<0, y>0, xy<-1 \end{cases}$
$\sin^{-1} x + \sin^{-1} y = \begin{cases} \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right), & -1 \leq x, y \leq 1, x^2+y^2 \leq 1\\ \pi - \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right), & x>0, y>0, x^2+y^2>1\\ -\pi - \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right), & -1 \leq x, y <0, x^2+y^2>1\end{cases}$
$\sin^{-1} x - \sin^{-1} y = \begin{cases} \sin^{-1}\left(x\sqrt{1-y^2} - y\sqrt{1-x^2}\right), & -1 \leq x, y \leq 1, x^2+y^2 \leq 1\\ \pi - \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right), & x>0, y<0, x^2+y^2>1\\ -\pi - \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right), & -1 \leq x<0, 0<y\leq1, x^2+y^2>1\end{cases}$
$\cos^{-1} x + \cos^{-1} y = \cos^{-1}\left(xy - \sqrt{1-x^2}\sqrt{1-y^2}\right)$, if $0 < x, y \leq 1$
$\cos^{-1} x - \cos^{-1} y = \begin{cases} \cos^{-1}\left(xy + \sqrt{1-x^2}\sqrt{1-y^2}\right), & 0 \leq x, y \leq 1, x \leq y\\ -\cos^{-1}\left(xy + \sqrt{1-x^2}\sqrt{1-y^2}\right), & 0 < x, y \leq 1, x > y \end{cases}$
Below are the multiple angle formulas of inverse trigonometric functions such as $\sin^{-1}$, $\cos^{-1}$, and $\tan^{-1}$. These formulas are useful for solving advanced problems in inverse trigonometric functions class 12 and calculus.
$2\sin^{-1} x = \begin{cases} \sin^{-1}(2x\sqrt{1-x^2}), & -\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}}\\ \pi - \sin^{-1}(2x\sqrt{1-x^2}), & x > \frac{1}{\sqrt{2}}\\ -\pi - \sin^{-1}(2x\sqrt{1-x^2}), & x < -\frac{1}{\sqrt{2}} \end{cases}$
$3\sin^{-1} x = \begin{cases} \sin^{-1}(3x - 4x^3), & -\frac{1}{2} \leq x \leq \frac{1}{2}\\ \pi - \sin^{-1}(3x - 4x^3), & x > \frac{1}{2}\\ -\pi - \sin^{-1}(3x - 4x^3), & x < -\frac{1}{2}\end{cases}$
$2\cos^{-1} x = \begin{cases} \cos^{-1}(2x^2 - 1), & 0 \leq x \leq 1\\ 2\pi - \cos^{-1}(2x^2 - 1), & -1 \leq x \leq 0\end{cases}$
$3\cos^{-1} x = \begin{cases} \cos^{-1}(4x^3 - 3x), & \frac{1}{2} \leq x \leq 1\\ 2\pi - \cos^{-1}(4x^3 - 3x), & -\frac{1}{2} \leq x \leq \frac{1}{2}\\ 2\pi + \cos^{-1}(4x^3 - 3x), & -1 \leq x \leq -\frac{1}{2}\end{cases}$
$2\tan^{-1} x = \begin{cases} \sin^{-1}\left(\frac{2x}{1+x^2}\right), & -1 \leq x \leq 1\\ \pi - \sin^{-1}\left(\frac{2x}{1+x^2}\right), & x>1\\ -\pi - \sin^{-1}\left(\frac{2x}{1+x^2}\right), & x<-1\end{cases}$
$2\tan^{-1} x = \begin{cases} \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right), & 0 \leq x < \infty\\ -\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right), & -\infty < x \leq 0\end{cases}$
The derivatives of inverse trigonometric functions are essential for calculus problems:
$\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}}, x \neq \pm 1$
$\frac{d}{dx}(\cos^{-1} x) = \frac{-1}{\sqrt{1-x^2}}, x \neq \pm 1$
$\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2}$
$\frac{d}{dx}(\cot^{-1} x) = \frac{-1}{1+x^2}$
$\frac{d}{dx}(\sec^{-1} x) = \frac{1}{|x|\sqrt{x^2-1}}, x \neq \pm 1$
$\frac{d}{dx}(\csc^{-1} x) = \frac{-1}{|x|\sqrt{x^2-1}}, x \neq \pm 1$
The integrals of inverse trigonometric functions are widely used in calculus:
$\int \sin^{-1} x ,dx = x\sin^{-1}x + \sqrt{1-x^2} + C$
$\int \cos^{-1} x ,dx = x\cos^{-1}x - \sqrt{1-x^2} + C$
$\int \tan^{-1} x ,dx = x\tan^{-1}x - \frac{1}{2}\ln|1+x^2| + C$
$\int \csc^{-1} x ,dx = x\csc^{-1}x + \ln|x+\sqrt{x^2-1}| + C$
$\int \sec^{-1} x ,dx = x\sec^{-1}x - \ln|x+\sqrt{x^2-1}| + C$
$\int \cot^{-1} x ,dx = x\cot^{-1}x + \frac{1}{2}\ln|1+x^2| + C$
This table summarizes the domain and range of inverse trigonometric functions, which is an important topic for inverse trigonometric functions class 12 and solving problems.
Function | Domain | Range |
---|---|---|
$y = \sin^{-1}x$ | $[-1,1]$ | $[-\frac{\pi}{2}, \frac{\pi}{2}]$ |
$y = \cos^{-1}x$ | $[-1,1]$ | $[0, \pi]$ |
$y = \csc^{-1}x$ | $\mathbb{R} - (-1,1)$ | $[-\frac{\pi}{2}, \frac{\pi}{2}] - {0}$ |
$y = \sec^{-1}x$ | $\mathbb{R} - (-1,1)$ | $[0, \pi] - {\frac{\pi}{2}}$ |
$y = \tan^{-1}x$ | $\mathbb{R}$ | $(-\frac{\pi}{2}, \frac{\pi}{2})$ |
$y = \cot^{-1}x$ | $\mathbb{R}$ | $(0, \pi)$ |
Below is a table showing the key differences between trigonometric functions and inverse trigonometric functions, covering their definitions, domains, ranges, and applications in inverse trigonometric functions class 12.
Aspect | Trigonometric Functions | Inverse Trigonometric Functions |
---|---|---|
Definition | Relates an angle to a ratio of sides | Finds the angle when the ratio is known |
Example | $\sin(\frac{\pi}{6}) = \frac{1}{2}$ | $\sin^{-1}(\frac{1}{2}) = \frac{\pi}{6}$ |
Functions | $\sin$, $\cos$, $\tan$, $\csc$, $\sec$, $\cot$ | $\sin^{-1}$, $\cos^{-1}$, $\tan^{-1}$, $\csc^{-1}$, $\sec^{-1}$, $\cot^{-1}$ |
Domain | Angles (measure in radians or degrees) | Ratios (real numbers within restricted intervals) |
Range | Ratios of sides | Angles within specific ranges |
One-to-one nature | Not one-one over its entire domain | One-one in restricted domain and range |
Applications | Finding ratios from angles | Finding angles from known ratios |
Below is a list of important topics related to the NCERT syllabus and JEE Main, helping you focus on key areas for preparation.
Below are the recommended books for studying inverse trigonometric functions, including theory, examples, and practice questions, useful for inverse trigonometric functions class 12 and competitive exams like JEE Main.
Book Title | Author / Publisher | Description |
---|---|---|
NCERT Class 12 Mathematics | NCERT | Official textbook covering all concepts and examples on inverse trigonometric functions. |
Mathematics for Class 12 | R.D. Sharma | Detailed explanations and a variety of solved problems on inverse trigonometric functions. |
Higher Algebra | Hall & Knight | In-depth treatment of algebra including inverse trigonometric identities and properties. |
Objective Mathematics | R.S. Aggarwal | Exam-oriented book with MCQs and practice sets on inverse trigonometric functions. |
Arihant Publications (JEE Main & Advanced series) | Arihant | Comprehensive coverage and practice questions for JEE and board exams. |
Below are helpful NCERT resources such as textbooks, solutions, and notes that explain inverse trigonometric functions clearly, making it easier to prepare for board exams and entrance tests.
NCERT Maths Notes for Class 12th Chapter 2 - Inverse Trigonometric Functions
NCERT Maths Solutions for Class 12th Chapter 2 - Inverse Trigonometric Functions
NCERT Maths Exemplar Solutions for Class 12th Chapter 2 - Inverse Trigonometric Functions
Below are subject-wise NCERT resources offering notes, solutions, exemplar problems, and solved examples for class 12 and competitive exam preparation.
Below are practice questions based on inverse trigonometric functions, including problems from NCERT exercises and JEE Main-level questions, to help you strengthen your understanding and problem-solving skills.
Frequently Asked Questions (FAQs)
The six inverse trigonometric functions are $\sin^{-1}, \cos^{-1}, \tan^{-1}, \csc^{-1}, \sec^{-1}, \cot^{-1}$.
Inverse trigonometric functions are the inverse functions of the trigonometric functions.
Arctan is the inverse of $\tan$ in trigonometric functions.
The domain and range of the inverse trigonometric functions are
\begin{array}{|l|l|l|}
\hline \text { Function } & \text { Domain } & \text { Range } \\
\hline y=\sin ^{-1} x & {[-1,1]} & {[-\pi / 2, \pi / 2]} \\
\hline y=\cos ^{-1} x & {[-1,1]} & {[0, \pi]} \\
\hline y=\operatorname{cosec}^{-1} x & R-(-1,1) & {[-\pi / 2, \pi / 2]-\{0\}} \\
\hline y=\sec ^{-1} x & R-(-1,1) & {[0, \pi]-\{\pi / 2\}} \\
\hline y=\tan ^{-1} x & R & (-\pi / 2, \pi / 2) \\
\hline y=\cot ^{-1} x & R & (0, \pi) \\
\hline
\end{array}
The value of $\cos$ $\pi$ is $-1$.