Inverse Trigonometric Functions
  • Maths
  • Inverse Trigonometric Functions

Inverse Trigonometric Functions

Team Careers360Updated on 15 Sep 2025, 09:54 PM IST

Imagine you are standing in front of a tall tower and you know its height, but you want to find the angle at which you are looking at the top. In such cases, inverse trigonometric functions are used to calculate that angle using the known height and distance. In class 12, you will learn about inverse trigonometric functions, inverse trigonometric functions formulas, domain and range of inverse trigonometric functions, and graphs of inverse trigonometric functions. You will also study differentiation of inverse trigonometric functions, integration of inverse trigonometric functions, and the derivative of inverse trigonometric functions. In this article, we will explain inverse trigonometric functions in simple language with examples, inverse trigonometric functions class 12 solutions, formulae, and notes to help you understand the topic easily in mathematics.

This Story also Contains

  1. What are Inverse Trigonometric Functions?
  2. Domain and Range of Inverse Trigonometric Functions
  3. Inverse Trigonometric Functions Formulas
  4. Inverse Trigonometric Functions Table
  5. List of Topics according to NCERT/JEE MAIN
  6. Important Books for Inverse Trigonometric Functions
  7. Practice Questions based on Inverse Trigonometric Functions

What are Inverse Trigonometric Functions?

Inverse trigonometric functions help us find angles when the value of a trigonometric ratio is known. They play an important role in solving problems related to geometry, calculus, and real-life applications.

Inverse trigonometric functions are used to determine an angle from a given trigonometric value. For example, if $\sin \theta = \frac{1}{2}$, then $\theta = \sin^{-1}(\frac{1}{2})$. In inverse trigonometric functions class 12, you will learn how to apply inverse trigonometric functions formulas, understand the domain and range of inverse trigonometric functions, and interpret the graph of inverse trigonometric functions.

Inverse trigonometric functins are the reverse process of the trigonometric functions. In other words, the domain of the inverse function is the range of the original function and vice versa.

For example:

  1. $\sin(\frac{\pi}{6}) = \frac{1}{2}$ ⇒ $\frac{\pi}{6} = \sin^{-1}(\frac{1}{2})$

  2. $\cos(\pi) = -1$ ⇒ $\pi = \cos^{-1}(-1)$

  3. $\tan(\frac{\pi}{4}) = 1$ ⇒ $\frac{\pi}{4} = \tan^{-1}(1)$

Types of Inverse Trigonometric Functions

  1. Arcsine ($\sin^{-1}$) – Inverse of the sine function

  2. Arccosine ($\cos^{-1}$) – Inverse of the cosine function

  3. Arctangent ($\tan^{-1}$) – Inverse of the tangent function

  4. Arccotangent ($\cot^{-1}$) – Inverse of the cotangent function

  5. Arcsecant ($\sec^{-1}$) – Inverse of the secant function

  6. Arccosecant ($\csc^{-1}$) – Inverse of the cosecant function

JEE Main Highest Scoring Chapters & Topics
Focus on high-weightage topics with this eBook and prepare smarter. Gain accuracy, speed, and a better chance at scoring higher.
Download E-book

These functions are covered in inverse trigonometric functions class 12 and include important formulas, domain and range explanations, and graphs.

Domain and Range of Inverse Trigonometric Functions

Understanding the domain and range of inverse trigonometric functions is essential for solving problems. Below are the domains and ranges for each inverse function.

To define inverse trigonometric functions properly, the original trigonometric functions must be one-one and onto in the selected domain and range. For example, the sine function is defined for all real numbers, but its inverse is only defined when the domain is restricted to $[-\frac{\pi}{2}, \frac{\pi}{2}]$ and the range to $[-1, 1]$.

Thus,

  • The domain of $y = \sin^{-1}(x)$ is $[-1, 1]$

  • The range of $y = \sin^{-1}(x)$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$

The same process applies to other functions like cosine, tangent, secant, etc.

Principal Domain / Principal Value Branch

By convention, the domain of inverse trigonometric functions is chosen to ensure the function is one-one and onto. For example, the principal domain for $y = \sin(x)$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$, which makes $y = \sin^{-1}(x)$ well-defined.

Inverse Trigonometric FunctionDomainRange
$\sin^{-1}(x)$ (Arcsine)$[-1, 1]$$[-\frac{\pi}{2}, \frac{\pi}{2}]$
$\cos^{-1}(x)$ (Arccosine)$[-1, 1]$$[0, \pi]$
$\tan^{-1}(x)$ (Arctangent)All real numbers$(-\frac{\pi}{2}, \frac{\pi}{2})$
$\cot^{-1}(x)$ (Arccotangent)All real numbers$(0, \pi)$
$\sec^{-1}(x)$ (Arcsecant)$(-\infty, -1] \cup [1, +\infty)$$[0, \pi], y \neq \frac{\pi}{2}$
$\csc^{-1}(x)$ (Arccosecant)$(-\infty, -1] \cup [1, +\infty)$$[-\frac{\pi}{2}, \frac{\pi}{2}], y \neq 0$

Graph of Inverse Trigonometric Functions

The graphs of inverse trigonometric functions are given as below:

$y=\sin ^{-1}(x)$

$\sin ^{-1}(x)$ is the inverse of the trignometric function $\sin x$.

$\mathrm{y}=\sin \mathrm{x}, \mathrm{x} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $\mathrm{y} \in[-1,1]$

arcsin

$y=\cos ^{-1}(x)$

$\cos ^{-1}(x)$ is the inverse of $\cos x$

arccos

$y=\tan ^{-1}(x)$

$\tan ^{-1}(x)$ is the inverse of $\tan x$.

arctan

$y=\operatorname{cosec}^{-1}(x)$

$\operatorname{cosec}^{-1}(x)$ is the inverse of $\operatorname{cosec} x$.

arccosec

$y=\sec ^{-1}(x)$

$\sec ^{-1}(x)$ is the inverse of $\sec x$.

arcsec

$y=\cot ^{-1}(x)$

$\cot ^{-1}(x)$ is the inverse of $\cot x$.

arccot

Inverse Trigonometric Functions Formulas

This section covers important inverse trigonometric functions formulas, including formulas for negative functions, reciprocal functions, complementary functions, sum and difference of angles, multiple angles, as well as differentiation and integration formulas. These formulas are essential for inverse trigonometric functions class 12 and are helpful in solving calculus problems.

Formulas for Negative Functions

  • $\sin^{-1}(-x) = -\sin^{-1}(x)$, for all $x \in [-1,1]$

  • $\tan^{-1}(-x) = -\tan^{-1}(x)$, for all $x \in \mathbb{R}$

  • $\csc^{-1}(-x) = -\csc^{-1}(x)$, for all $x \in \mathbb{R} - (-1,1)$

  • $\cos^{-1}(-x) = \pi - \cos^{-1}(x)$, for all $x \in [-1,1]$

  • $\sec^{-1}(-x) = \pi - \sec^{-1}(x)$, for all $x \in \mathbb{R} - (-1,1)$

  • $\cot^{-1}(-x) = \pi - \cot^{-1}(x)$, for all $x \in \mathbb{R}$

Formulas for Reciprocal Functions

  • $\sin^{-1}\left(\frac{1}{x}\right) = \csc^{-1}(x)$, for all $x \in (-\infty,-1] \cup [1,\infty)$

  • $\cos^{-1}\left(\frac{1}{x}\right) = \sec^{-1}(x)$, for all $x \in (-\infty,-1] \cup [1,\infty)$

  • $\tan^{-1}\left(\frac{1}{x}\right) = \begin{cases}\cot^{-1} x, & x>0\ -\pi + \cot^{-1} x, & x<0\end{cases}$

Formulas for Complementary Functions

The sum of complementary functions results in a right angle:

  • $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$, for all $x \in [-1,1]$

  • $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$, for all $x \in \mathbb{R}$

  • $\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}$, for all $x \in (-\infty,-1] \cup [1,\infty)$

Sum and Difference Formulas of Inverse Trigonometric Functions

Below are the sum and difference formulas of inverse trigonometric functions like $\tan^{-1}$, $\sin^{-1}$, and $\cos^{-1}$. These formulas help in simplifying expressions and solving equations in inverse trigonometric functions class 12.

Sum of Angles in Terms of $\tan^{-1}$

  • $\tan^{-1} x + \tan^{-1} y = \begin{cases} \tan^{-1}\left(\frac{x+y}{1-xy}\right), & x>0, y>0, xy<1\\ \pi + \tan^{-1}\left(\frac{x+y}{1-xy}\right), & x>0, y>0, xy>1\\ -\pi + \tan^{-1}\left(\frac{x+y}{1-xy}\right), & x<0, y<0, xy>1 \end{cases}$

Difference of Angles in Terms of $\tan^{-1}$

  • $\tan^{-1} x - \tan^{-1} y = \begin{cases} \tan^{-1}\left(\frac{x-y}{1+xy}\right), & xy > -1\\ \pi + \tan^{-1}\left(\frac{x-y}{1+xy}\right), & x>0, y<0, xy<-1\\ -\pi + \tan^{-1}\left(\frac{x-y}{1+xy}\right), & x<0, y>0, xy<-1 \end{cases}$

Sum and Difference of Angles in Terms of $\sin^{-1}$

  • $\sin^{-1} x + \sin^{-1} y = \begin{cases} \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right), & -1 \leq x, y \leq 1, x^2+y^2 \leq 1\\ \pi - \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right), & x>0, y>0, x^2+y^2>1\\ -\pi - \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right), & -1 \leq x, y <0, x^2+y^2>1\end{cases}$

  • $\sin^{-1} x - \sin^{-1} y = \begin{cases} \sin^{-1}\left(x\sqrt{1-y^2} - y\sqrt{1-x^2}\right), & -1 \leq x, y \leq 1, x^2+y^2 \leq 1\\ \pi - \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right), & x>0, y<0, x^2+y^2>1\\ -\pi - \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right), & -1 \leq x<0, 0<y\leq1, x^2+y^2>1\end{cases}$

Sum and Difference of Angles in Terms of $\cos^{-1}$

  • $\cos^{-1} x + \cos^{-1} y = \cos^{-1}\left(xy - \sqrt{1-x^2}\sqrt{1-y^2}\right)$, if $0 < x, y \leq 1$

  • $\cos^{-1} x - \cos^{-1} y = \begin{cases} \cos^{-1}\left(xy + \sqrt{1-x^2}\sqrt{1-y^2}\right), & 0 \leq x, y \leq 1, x \leq y\\ -\cos^{-1}\left(xy + \sqrt{1-x^2}\sqrt{1-y^2}\right), & 0 < x, y \leq 1, x > y \end{cases}$

Multiple Angle Formulas of Inverse Trigonometric Functions

Below are the multiple angle formulas of inverse trigonometric functions such as $\sin^{-1}$, $\cos^{-1}$, and $\tan^{-1}$. These formulas are useful for solving advanced problems in inverse trigonometric functions class 12 and calculus.

Double and Triple Angle Formulas in Terms of $\sin^{-1}$

  • $2\sin^{-1} x = \begin{cases} \sin^{-1}(2x\sqrt{1-x^2}), & -\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}}\\ \pi - \sin^{-1}(2x\sqrt{1-x^2}), & x > \frac{1}{\sqrt{2}}\\ -\pi - \sin^{-1}(2x\sqrt{1-x^2}), & x < -\frac{1}{\sqrt{2}} \end{cases}$

  • $3\sin^{-1} x = \begin{cases} \sin^{-1}(3x - 4x^3), & -\frac{1}{2} \leq x \leq \frac{1}{2}\\ \pi - \sin^{-1}(3x - 4x^3), & x > \frac{1}{2}\\ -\pi - \sin^{-1}(3x - 4x^3), & x < -\frac{1}{2}\end{cases}$

Double and Triple Angle Formulas in Terms of $\cos^{-1}$

  • $2\cos^{-1} x = \begin{cases} \cos^{-1}(2x^2 - 1), & 0 \leq x \leq 1\\ 2\pi - \cos^{-1}(2x^2 - 1), & -1 \leq x \leq 0\end{cases}$

  • $3\cos^{-1} x = \begin{cases} \cos^{-1}(4x^3 - 3x), & \frac{1}{2} \leq x \leq 1\\ 2\pi - \cos^{-1}(4x^3 - 3x), & -\frac{1}{2} \leq x \leq \frac{1}{2}\\ 2\pi + \cos^{-1}(4x^3 - 3x), & -1 \leq x \leq -\frac{1}{2}\end{cases}$

Multiple Angles in Terms of $\tan^{-1}$ and $\sin^{-1}$

  • $2\tan^{-1} x = \begin{cases} \sin^{-1}\left(\frac{2x}{1+x^2}\right), & -1 \leq x \leq 1\\ \pi - \sin^{-1}\left(\frac{2x}{1+x^2}\right), & x>1\\ -\pi - \sin^{-1}\left(\frac{2x}{1+x^2}\right), & x<-1\end{cases}$

Multiple Angles in Terms of $\tan^{-1}$ and $\cos^{-1}$

  • $2\tan^{-1} x = \begin{cases} \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right), & 0 \leq x < \infty\\ -\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right), & -\infty < x \leq 0\end{cases}$

Differentiation of Inverse Trigonometric Functions

The derivatives of inverse trigonometric functions are essential for calculus problems:

  • $\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}}, x \neq \pm 1$

  • $\frac{d}{dx}(\cos^{-1} x) = \frac{-1}{\sqrt{1-x^2}}, x \neq \pm 1$

  • $\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2}$

  • $\frac{d}{dx}(\cot^{-1} x) = \frac{-1}{1+x^2}$

  • $\frac{d}{dx}(\sec^{-1} x) = \frac{1}{|x|\sqrt{x^2-1}}, x \neq \pm 1$

  • $\frac{d}{dx}(\csc^{-1} x) = \frac{-1}{|x|\sqrt{x^2-1}}, x \neq \pm 1$

Integration of Inverse Trigonometric Functions

The integrals of inverse trigonometric functions are widely used in calculus:

  • $\int \sin^{-1} x ,dx = x\sin^{-1}x + \sqrt{1-x^2} + C$

  • $\int \cos^{-1} x ,dx = x\cos^{-1}x - \sqrt{1-x^2} + C$

  • $\int \tan^{-1} x ,dx = x\tan^{-1}x - \frac{1}{2}\ln|1+x^2| + C$

  • $\int \csc^{-1} x ,dx = x\csc^{-1}x + \ln|x+\sqrt{x^2-1}| + C$

  • $\int \sec^{-1} x ,dx = x\sec^{-1}x - \ln|x+\sqrt{x^2-1}| + C$

  • $\int \cot^{-1} x ,dx = x\cot^{-1}x + \frac{1}{2}\ln|1+x^2| + C$

Inverse Trigonometric Functions Table

This table summarizes the domain and range of inverse trigonometric functions, which is an important topic for inverse trigonometric functions class 12 and solving problems.

FunctionDomainRange
$y = \sin^{-1}x$$[-1,1]$$[-\frac{\pi}{2}, \frac{\pi}{2}]$
$y = \cos^{-1}x$$[-1,1]$$[0, \pi]$
$y = \csc^{-1}x$$\mathbb{R} - (-1,1)$$[-\frac{\pi}{2}, \frac{\pi}{2}] - {0}$
$y = \sec^{-1}x$$\mathbb{R} - (-1,1)$$[0, \pi] - {\frac{\pi}{2}}$
$y = \tan^{-1}x$$\mathbb{R}$$(-\frac{\pi}{2}, \frac{\pi}{2})$
$y = \cot^{-1}x$$\mathbb{R}$$(0, \pi)$

Difference between Trigonometric Functions and Inverse Trigonometric Functions

Below is a table showing the key differences between trigonometric functions and inverse trigonometric functions, covering their definitions, domains, ranges, and applications in inverse trigonometric functions class 12.

AspectTrigonometric FunctionsInverse Trigonometric Functions
DefinitionRelates an angle to a ratio of sidesFinds the angle when the ratio is known
Example$\sin(\frac{\pi}{6}) = \frac{1}{2}$$\sin^{-1}(\frac{1}{2}) = \frac{\pi}{6}$
Functions$\sin$, $\cos$, $\tan$, $\csc$, $\sec$, $\cot$$\sin^{-1}$, $\cos^{-1}$, $\tan^{-1}$, $\csc^{-1}$, $\sec^{-1}$, $\cot^{-1}$
DomainAngles (measure in radians or degrees)Ratios (real numbers within restricted intervals)
RangeRatios of sidesAngles within specific ranges
One-to-one natureNot one-one over its entire domainOne-one in restricted domain and range
ApplicationsFinding ratios from anglesFinding angles from known ratios

List of Topics according to NCERT/JEE MAIN

Below is a list of important topics related to the NCERT syllabus and JEE Main, helping you focus on key areas for preparation.

Important Books for Inverse Trigonometric Functions

Below are the recommended books for studying inverse trigonometric functions, including theory, examples, and practice questions, useful for inverse trigonometric functions class 12 and competitive exams like JEE Main.

Book TitleAuthor / PublisherDescription
NCERT Class 12 MathematicsNCERTOfficial textbook covering all concepts and examples on inverse trigonometric functions.
Mathematics for Class 12R.D. SharmaDetailed explanations and a variety of solved problems on inverse trigonometric functions.
Higher AlgebraHall & KnightIn-depth treatment of algebra including inverse trigonometric identities and properties.
Objective MathematicsR.S. AggarwalExam-oriented book with MCQs and practice sets on inverse trigonometric functions.
Arihant Publications (JEE Main & Advanced series)ArihantComprehensive coverage and practice questions for JEE and board exams.

NCERT Resources

Below are helpful NCERT resources such as textbooks, solutions, and notes that explain inverse trigonometric functions clearly, making it easier to prepare for board exams and entrance tests.

NCERT Maths Notes for Class 12th Chapter 2 - Inverse Trigonometric Functions

NCERT Maths Solutions for Class 12th Chapter 2 - Inverse Trigonometric Functions

NCERT Maths Exemplar Solutions for Class 12th Chapter 2 - Inverse Trigonometric Functions

NCERT Subjectwise Resources

Below are subject-wise NCERT resources offering notes, solutions, exemplar problems, and solved examples for class 12 and competitive exam preparation.

Practice Questions based on Inverse Trigonometric Functions

Below are practice questions based on inverse trigonometric functions, including problems from NCERT exercises and JEE Main-level questions, to help you strengthen your understanding and problem-solving skills.

Frequently Asked Questions (FAQs)

Q: What are the six inverse trigoometric functions?
A:

The six inverse trigonometric functions are $\sin^{-1}, \cos^{-1}, \tan^{-1}, \csc^{-1}, \sec^{-1}, \cot^{-1}$.

Q: What are inverse trigonometric functions class 12?
A:

Inverse trigonometric functions are the inverse functions of the trigonometric functions.

Q: What is meant by arctan?
A:

Arctan is the inverse of $\tan$ in trigonometric functions.

Q: Give the domain and range of the inverse trigonometric functions.
A:

The domain and range of the inverse trigonometric functions are 

\begin{array}{|l|l|l|}
\hline \text { Function } & \text { Domain } & \text { Range } \\
\hline y=\sin ^{-1} x & {[-1,1]} & {[-\pi / 2, \pi / 2]} \\
\hline y=\cos ^{-1} x & {[-1,1]} & {[0, \pi]} \\
\hline y=\operatorname{cosec}^{-1} x & R-(-1,1) & {[-\pi / 2, \pi / 2]-\{0\}} \\
\hline y=\sec ^{-1} x & R-(-1,1) & {[0, \pi]-\{\pi / 2\}} \\
\hline y=\tan ^{-1} x & R & (-\pi / 2, \pi / 2) \\
\hline y=\cot ^{-1} x & R & (0, \pi) \\
\hline
\end{array}

Q: What is cos in pi?
A:

The value of $\cos$ $\pi$ is $-1$.