Download Careers360 App
Definite Integrals of Piecewise Functions

Definite Integrals of Piecewise Functions

Edited By Komal Miglani | Updated on Jul 02, 2025 08:00 PM IST

Integration is one of the important parts of Calculus, which applies to measuring the change in the function at a certain point. Mathematically, it forms a powerful tool by which slopes of functions are determined, the maximum and minimum of functions found, and problems on motion, growth, and decay, to name a few. These integration concepts have been broadly applied in branches of mathematics, physics, engineering, economics, and biology.

Definite Integrals of Piecewise Functions
Definite Integrals of Piecewise Functions

Piecewise Definite integration

Definite integration calculates the area under a curve between two specific points on the x-axis.

Let f be a function of x defined on the closed interval [a, b]. F be another function such that $\frac{d}{d x}(F(x))=f(x)$ for all x in the domain of f, then $\int_a^b f(x) d x=[F(x)+c]_a^b=F(b)-F(a)$is called the definite integral of the function f(x) over the interval [a, b], where a is called the lower limit of the integral and b is called the upper limit of the integral.

Definite integrals have properties that relate to the limits of integration.

Property 1

If the upper and lower limits of integration are the same, the integral is just a line and contains no area, hence the value is 0. $\int_a^a f(x) d x=0$

Property 2

The value of the definite integral of a function over any particular interval depends on the function and the interval but not on the variable of the integration. $\int_a^b f(x) d x=\int_a^b f(t) d t=\int_a^b f(y) d y$

Property 3

If the limits of definite integral are interchanged, then its value changes by a minus sign only.

Property 4 (King's Property)

This is one of the most important properties of definite integration. $\int_a^b f(x) d x=\int_a^b f(a+b-x) d x$

Property 5 (Piecewise Definite integration)

$\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\int_{\mathrm{a}}^{\mathrm{c}} \mathrm{f}(\mathrm{x}) \mathrm{dx}+\int_{\mathrm{c}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{dx}$ where $c \in \mathbb{R}$

This property is useful when the function is in the form of piecewise or discontinuous or non-differentiable at x = c in (a, b).
$
\begin{aligned}
& \text { Let } \quad \frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{F}(\mathrm{x}))=\mathrm{f}(\mathrm{x}) \\
& \therefore \quad \int_a^c f(x) d x+\int_c^b f(x) d x \\
& =\left.\mathrm{F}(\mathrm{x})\right|_{\mathrm{a}} ^{\mathrm{c}}+\left.\mathrm{F}(\mathrm{x})\right|_{\mathrm{c}} ^{\mathrm{b}} \\
& =\mathrm{F}(\mathrm{c})-\mathrm{F}(\mathrm{a})+\mathrm{F}(\mathrm{b})-\mathrm{F}(\mathrm{c}) \\
& =\mathrm{F}(\mathrm{b})-\mathrm{F}(\mathrm{a}) \\
& =\int_a^b f(x) d x
\end{aligned}
$

The above property can be also generalized into the following form

$\int_a^b f(x) d x=\int_a^{c_1} f(x) d x+\int_{c_1}^{c_2} f(x) d x+\ldots+\int_{c_n}^b f(x) d x$

Property 6

$\int_0^a f(x) d x=\int_0^{a / 2} f(x) d x+\int_0^{a / 2} f(a-x) d x$

Proof:

From the previous property,

$
\int_0^a f(x) d x=\int_0^{a / 2} f(x) d x+\int_{a / 2}^a f(x) d x
$

Put $x=a-t \Rightarrow d x=-d t$ in the second integral, when $x=a / 2$, then $t=a / 2$ and when $x=a$, then $t=0$

$
\therefore \quad \begin{aligned}
\int_0^a f(x) d x & =\int_0^{a / 2} f(x) d x+\int_{a / 2}^0 f(a-t)(-d t) \\
& =\int_0^{\mathrm{a} / 2} \mathrm{f}(\mathrm{x}) \mathrm{dx}+\int_0^{\mathrm{a} / 2} \mathrm{f}(\mathrm{a}-\mathrm{t}) \mathrm{dt} \\
\int_0^a f(x) d x & =\int_0^{a / 2} f(x) d x+\int_0^{a / 2} f(a-x) d x
\end{aligned}
$

Recommended Video Based on Piecewise Definite Integration


Solved Examples Based on Piecewise Definite Integration:

Example 1: The integral $\int_0^\pi \sqrt{1+4 \sin ^2 \frac{x}{2}-4 \sin \frac{x}{2}} d x$ equals:

1) $4 \sqrt{3}-4$
2) $4 \sqrt{3}-4-\frac{\pi}{3}$
3) $\pi-4$
4) $\frac{2 \pi}{3}-4-4 \sqrt{3}$

Solution

As learnt in concept

Fundamental Properties of Definite integration -

If the function is continuous in (a, b ) then integration of a function a to b will be same as the sum of integrals of the same function from a to c and c to b.

$\int_b^a f(x) d x=\int_a^c f(x) d x+\int_c^b f(x) d x$

- wherein

$\begin{aligned} & =\int_0^\pi \sqrt{\left(1-2 \sin \frac{x}{2}\right)^2}=\int_0^\pi\left|1-2 \sin \frac{x}{2}\right| d x \\ & \int_0^{\frac{\pi}{3}} \sqrt{\left(1-2 \sin \frac{x}{2}\right)}=\int_{\frac{\pi}{4}}^\pi\left(1-2 \sin \frac{x}{2}\right) d x \\ & \left(x+4 \cos \frac{x}{2}\right)_0^{\frac{\pi}{3}}-\left(x+4 \cos \frac{x}{2}\right)^\pi \\ & =4 \sqrt{3}-4-\frac{\pi}{3}\end{aligned}$

Example 2: The value of $\int_1^a[x] f^{\prime}(x) d x, a>1$, where $[x]$ denotes the greatest integer not exceeding $x$ is
1) $a f(a)-\{f(1)+f(2)+\ldots+f([a])\}$
2) $[a] f(a)-\{f(1)+f(2)+\ldots+f([a])\}$
3) $[a] f([a])-\{f(1)+f(2)+\ldots+f(a)\}$
4) $a f([a])-\{f(1)+f(2)+\ldots+f(a)\}$

Solution

As learnt in concept

Fundamental Properties of Definite integration -

If the function is continuous in (a, b ) then integration of a function a to b will be same as the sum of integrals of the same function from a to c and c to b.

$\int_b^a f(x) d x=\int_a^c f(x) d x+\int_c^b f(x) d x$

- wherein


$[x]$ has to be split into integral limits.

$\int_1^a[x] f^{\prime}(x) d x$

=$\int_1^2 f^{\prime}(x) d x+\int_2^3 2 f^{\prime}(x) d x+\ldots-\ldots+\int_{[a]}^a[a] f^{\prime}(x) d x$

$\begin{aligned} & f(2)-f(1)+2 f(3)-2 f(2)+--------------- \\ = & ---------+[a] f(a)-[a] f([a])\end{aligned}$

Terms start cancelling out,

We get,

$\begin{aligned} & -f(1)-f(2)-f(3)------------------- \\ - & ---f[a]+[a] f(a)\end{aligned}$

=$=[a] f(a)-(f(1)+f(2)+\cdots-\cdots-\cdots-\cdots-\cdots([a])$

Example 3: $\int_0^{\sqrt{2}}\left[x^2\right] d x$ is

1) $2-\sqrt{2}$
2) $2+\sqrt{2}$
3) $\sqrt{2}-$
4) $\sqrt{2}-2$

Solution

Fundamental Properties of Definite integration -

If the function is continuous in (a, b ) then integration of a function a to b will be same as the sum of integrals of the same function from a to c and c to b.

$\int_b^a f(x) d x=\int_a^c f(x) d x+\int_c^b f(x) d x$

- wherein

$\begin{aligned} & \int_0^2\left[x^2\right] d x=\int_0^1\left[x^2\right] d x+\int_1^{\sqrt{2}}\left[x^2\right] d x \\ & \Rightarrow 0+\int_1^{\sqrt{2}} 1 d x=\sqrt{2}-1\end{aligned}$

Example 4: Choose the correct option?

1) $\int_{-a}^a f(x) d x=\int_{-a}^0 f(x) d x+\int_0^a f(x) d x$
2) $\int_a^c f(x) d x=\int_a^d f(x) d x+\int_d^c f(x) d x$; where $a<d<c$
3) $\int_a^c f(x) d x=\int_a^b f(x) d x+\int_b^c f(x) d x$; where $a<c<b$

4) All are true.

Solution

As we have learnt,

Fundamental Properties of Definite integration -

If the function is continuous in (a, b ) then integration of a function a to b will be same as the sum of integrals of the same function from a to c and c to b.

$\int_b^a f(x) d x=\int_a^c f(x) d x+\int_c^b f(x) d x$

- wherein

It doesn't matter if b lies between a and c or not.


Example 5: The value of the integral $\int_{-2}^2 \frac{\sin ^2 x}{\left[\frac{x}{\pi}\right]+\frac{1}{2}} d x$(where $[x]$ denotes the greatest integer less than or equal to (x) ) is :

1) $\sin 4$

2) 0

3) 4

4) $4-\sin 4$

Solution

Fundamental Properties of Definite integration -

If the function is continuous in (a, b ) then integration of a function a to b will be same as the sum of integrals of the same function from a to c and c to b.

$\int_b^a f(x) d x=\int_a^c f(x) d x+\int_c^b f(x) d x$

- wherein


$\begin{aligned} & I=\int_2^{-2} \frac{\sin ^2 x}{\left|\frac{1}{7}\right|+\frac{1}{2}} d x \\ & =\int_2^0 \frac{\sin ^2 x}{\frac{1}{2}} d x+\int_0^{-2} \frac{\sin ^2 x}{-1+\frac{1}{2}} d x \\ & 2 \oint_2^0 \sin ^2 x d x 1-2 \int_0^{-2} \sin ^2 x d x \\ & P u t x=-p \Rightarrow d x=-d y \sin ^2(-p)=\sin ^2 p \\ & =2 \oint_0^2 \sin ^2 x d x+2 \int_2^0 \sin ^2 P d p\end{aligned}$

Frequently Asked Questions (FAQs)

1. What is a piecewise function and how does it relate to definite integrals?
A piecewise function is a function defined by different expressions for different intervals of its domain. When integrating piecewise functions, we need to split the integral at the points where the function changes, and then sum the integrals of each piece. This approach ensures we accurately calculate the area under the curve for the entire function.
2. Why can't we simply integrate a piecewise function as a single expression?
We can't integrate a piecewise function as a single expression because the function is defined differently for different intervals. Each piece may have a different antiderivative, and the points where the function changes may introduce discontinuities. By splitting the integral, we ensure we're using the correct function definition for each part of the domain.
3. What role do the endpoints of each piece play in evaluating definite integrals of piecewise functions?
The endpoints of each piece in a piecewise function are crucial in evaluating definite integrals. They serve as the limits of integration for each piece and determine where we switch from one function definition to another. We use these endpoints to split the integral and ensure we're integrating the correct function over the right interval.
4. How do you set up a definite integral for a piecewise function?
To set up a definite integral for a piecewise function, follow these steps:
5. How do you handle discontinuities when integrating piecewise functions?
When integrating piecewise functions with discontinuities:
6. How do you handle definite integrals of piecewise functions where one piece is undefined in the interval of integration?
When one piece of a piecewise function is undefined in the interval of integration:
7. How do you use integration by parts with piecewise functions?
To use integration by parts with piecewise functions:
8. How do you determine if a piecewise function is continuous before integration?
To determine if a piecewise function is continuous:
9. Can you use u-substitution when integrating piecewise functions? If so, how?
Yes, you can use u-substitution when integrating piecewise functions, but you must apply it separately to each piece where it's appropriate. Here's how:
10. How do you graph the antiderivative of a piecewise function?
To graph the antiderivative of a piecewise function:
11. How do you evaluate improper integrals involving piecewise functions?
To evaluate improper integrals involving piecewise functions:
12. What are some common mistakes students make when integrating piecewise functions?
Common mistakes when integrating piecewise functions include:
13. How do you interpret the physical meaning of a definite integral of a piecewise function?
The physical meaning of a definite integral of a piecewise function depends on the context:
14. How do you handle definite integrals of piecewise functions with trigonometric components?
To handle definite integrals of piecewise functions with trigonometric components:
15. Can a definite integral of a piecewise function be negative? Why or why not?
Yes, a definite integral of a piecewise function can be negative. The definite integral represents the signed area between the function and the x-axis. If the area below the x-axis is larger than the area above it, or if the function is entirely below the x-axis in the given interval, the integral will be negative.
16. How does the Fundamental Theorem of Calculus apply to piecewise functions?
The Fundamental Theorem of Calculus applies to piecewise functions, but with a slight modification. Instead of applying it to the entire interval at once, we apply it to each piece separately. For each continuous piece, we can use the antiderivative method, evaluating the antiderivative at the endpoints of that piece. The sum of these results gives us the total integral.
17. What is the significance of the points where a piecewise function changes its definition?
The points where a piecewise function changes its definition are crucial because:
18. What is the difference between integrating a continuous piecewise function and a discontinuous one?
The main difference lies in how we handle the transition points:
19. How does the area interpretation of definite integrals apply to piecewise functions?
The area interpretation of definite integrals applies to piecewise functions in a piecewise manner:
20. What is the relationship between the definite integral of a piecewise function and the area between the function and the x-axis?
The definite integral of a piecewise function represents the net signed area between the function and the x-axis:
21. What is the significance of the Mean Value Theorem for Integrals when applied to piecewise functions?
The Mean Value Theorem for Integrals applies to piecewise functions, stating that there exists at least one point c in the interval [a,b] where:
22. How do you find the average value of a piecewise function over a given interval?
To find the average value of a piecewise function over an interval [a,b]:
23. How does integrating a piecewise function affect its continuity?
Integrating a piecewise function generally increases its continuity:
24. What is the importance of checking for continuity at transition points when integrating piecewise functions?
Checking for continuity at transition points is important because:
25. How do you handle definite integrals of piecewise functions with absolute value components?
To handle definite integrals of piecewise functions with absolute value components:
26. What is the relationship between the derivative and integral of a piecewise function?
The relationship between the derivative and integral of a piecewise function is complex:
27. What is the significance of the Second Fundamental Theorem of Calculus for piecewise functions?
The Second Fundamental Theorem of Calculus for piecewise functions states that:
28. How do you find the area between two piecewise functions?
To find the area between two piecewise functions f(x) and g(x):
29. How does the concept of accumulation functions apply to piecewise functions?
Accumulation functions for piecewise functions work as follows:
30. What is the relationship between the definite integral of a piecewise function and its indefinite integral?
The relationship between the definite and indefinite integrals of a piecewise function is:

Articles

sir when i am opening viteee knockout  5000 concepts matrices and its aplication chapter it opens complex number pls do help

they are not showing any option

when is vit entrance examination 2020?

Arrange the following Cobalt complexes in the order of incresing Crystal Field Stabilization Energy (CFSE) value. Complexes :  

\mathrm{\underset{\textbf{A}}{\left [ CoF_{6} \right ]^{3-}},\underset{\textbf{B}}{\left [ Co\left ( H_{2}O \right )_{6} \right ]^{2+}},\underset{\textbf{C}}{\left [ Co\left ( NH_{3} \right )_{6} \right ]^{3+}}\: and\: \ \underset{\textbf{D}}{\left [ Co\left ( en \right )_{3} \right ]^{3+}}}

Choose the correct option :
Option: 1 \mathrm{B< C< D< A}
Option: 2 \mathrm{B< A< C< D}
Option: 3 \mathrm{A< B< C< D}
Option: 4 \mathrm{C< D< B< A}

The type of hybridisation and magnetic property of the complex \left[\mathrm{MnCl}_{6}\right]^{3-}, respectively, are :
Option: 1 \mathrm{sp ^{3} d ^{2} \text { and diamagnetic }}
Option: 2 \mathrm{sp ^{3} d ^{2} \text { and diamagnetic }}
Option: 3 \mathrm{sp ^{3} d ^{2} \text { and diamagnetic }}
Option: 4 \mathrm{sp ^{3} d ^{2} \text { and diamagnetic }}
Option: 5 \mathrm{d ^{2} sp ^{3} \text { and diamagnetic }}
Option: 6 \mathrm{d ^{2} sp ^{3} \text { and diamagnetic }}
Option: 7 \mathrm{d ^{2} sp ^{3} \text { and diamagnetic }}
Option: 8 \mathrm{d ^{2} sp ^{3} \text { and diamagnetic }}
Option: 9 \mathrm{d ^{2} sp ^{3} \text { and paramagnetic }}
Option: 10 \mathrm{d ^{2} sp ^{3} \text { and paramagnetic }}
Option: 11 \mathrm{d ^{2} sp ^{3} \text { and paramagnetic }}
Option: 12 \mathrm{d ^{2} sp ^{3} \text { and paramagnetic }}
Option: 13 \mathrm{sp ^{3} d ^{2} \text { and paramagnetic }}
Option: 14 \mathrm{sp ^{3} d ^{2} \text { and paramagnetic }}
Option: 15 \mathrm{sp ^{3} d ^{2} \text { and paramagnetic }}
Option: 16 \mathrm{sp ^{3} d ^{2} \text { and paramagnetic }}
The number of geometrical isomers found in the metal complexes \mathrm{\left[ PtCl _{2}\left( NH _{3}\right)_{2}\right],\left[ Ni ( CO )_{4}\right], \left[ Ru \left( H _{2} O \right)_{3} Cl _{3}\right] \text { and }\left[ CoCl _{2}\left( NH _{3}\right)_{4}\right]^{+}} respectively, are :
Option: 1 1,1,1,1
Option: 2 1,1,1,1
Option: 3 1,1,1,1
Option: 4 1,1,1,1
Option: 5 2,1,2,2
Option: 6 2,1,2,2
Option: 7 2,1,2,2
Option: 8 2,1,2,2
Option: 9 2,0,2,2
Option: 10 2,0,2,2
Option: 11 2,0,2,2
Option: 12 2,0,2,2
Option: 13 2,1,2,1
Option: 14 2,1,2,1
Option: 15 2,1,2,1
Option: 16 2,1,2,1
Spin only magnetic moment of an octahedral complex of \mathrm{Fe}^{2+} in the presence of a strong field ligand in BM is :
Option: 1 4.89
Option: 2 4.89
Option: 3 4.89
Option: 4 4.89
Option: 5 2.82
Option: 6 2.82
Option: 7 2.82
Option: 8 2.82
Option: 9 0
Option: 10 0
Option: 11 0
Option: 12 0
Option: 13 3.46
Option: 14 3.46
Option: 15 3.46
Option: 16 3.46

3 moles of metal complex with formula \mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{3} gives 3 moles of silver chloride on treatment with excess of silver nitrate. The secondary valency of CO in the complex is_______.
(Round off to the nearest integer)
 

The overall stability constant of the complex ion \mathrm{\left [ Cu\left ( NH_{3} \right )_{4} \right ]^{2+}} is 2.1\times 10^{1 3}. The overall dissociation constant is y\times 10^{-14}. Then y is ___________(Nearest integer)
 

Identify the correct order of solubility in aqueous medium:

Option: 1

Na2S > ZnS > CuS


Option: 2

CuS > ZnS > Na2S


Option: 3

ZnS > Na2S > CuS


Option: 4

Na2S > CuS > ZnS


Back to top