Integral of Particular Functions: Examples

Integral of Particular Functions: Examples

Komal MiglaniUpdated on 02 Jul 2025, 08:07 PM IST

Integration of indefinite integral is one of the important parts of Calculus, which applies to measuring the change in the function at a certain point. Mathematically, it forms a powerful tool by which slopes of functions are determined, the maximum and minimum of functions found, and problems on motion, growth, and decay, to name a few. These concepts of integration have been broadly applied in branches of mathematics, physics, engineering, economics, and biology.

Integral of Particular Functions: Examples
Integral of Particular Functions: Examples

In this article, we will cover the concept of Integration of indefinite integral. This concept falls under the broader category of Calculus, which is a crucial Chapter in class 12 Mathematics. It is not only essential for board exams but also for competitive exams like the Joint Entrance Examination (JEE Main), and other entrance exams such as SRMJEE, BITSAT, WBJEE, BCECE, and more. Over the last ten years of the JEE Main exam (from 2013 to 2023), a total of two questions have been asked on this concept, including one in 2021, and one in 2023.

Integrals of Particular Function

Integration is the reverse process of differentiation. In integration, we find the function whose differential coefficient is given. The rate of change of a quantity y concerning another quantity x is called the derivative or differential coefficient of y concerning x. Geometrically, the Differentiation of a function at a point represents the slope of the tangent to the graph of the function at that point.

1. $\int \frac{d x}{x^2+a^2}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C$

$\begin{aligned}
& \text { put } x=a \tan \theta, \text { then } d x=a \sec ^2 \theta d \theta \\
& \begin{aligned}
\therefore \int \frac{d x}{x^2+a^2} & =\int \frac{a \sec ^2 \theta}{a^2+a^2 \tan ^2 \theta} d \theta \\
& =\int \frac{a^2 \sec ^2 \theta}{a^2\left(1+\tan ^2 \theta\right)} d \theta \\
& =\frac{1}{a} \int d \theta=\frac{1}{a} \theta+C=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C
\end{aligned}
\end{aligned}$


2. $\int \frac{d x}{x^2-a^2}=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+C$
we can rewrite above integral as

$\begin{aligned}
\int \frac{d x}{x^2-a^2} & =\frac{1}{2 a} \int\left(\frac{1}{x-a}-\frac{1}{x+a}\right) d x \\
& =\frac{1}{2 a}(\log |x-a|-\log |x+a|)+c \\
& =\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+C
\end{aligned}$

3. $\int \frac{d x}{a^2-x^2}=\frac{1}{2 a} \log \left|\frac{a+x}{a-x}\right|+C$

4. $\int \frac{d x}{\sqrt{a^2-x^2}}=\sin ^{-1}\left(\frac{x}{a}\right)+C$

5. $\int \frac{d x}{\sqrt{\mathrm{a}^2+\mathrm{x}^2}}=\log \left|x+\sqrt{\mathrm{x}^2+\mathrm{a}^2}\right|+C$

6. $\int \frac{d x}{\sqrt{x^2-a^2}}=\log \left|x+\sqrt{x^2-a^2}\right|+C$

7. $\int \sqrt{a^2-x^2} d x=\frac{1}{2} x \sqrt{a^2-x^2}+\frac{1}{2} a^2 \sin ^{-1}\left(\frac{x}{a}\right)+C$

8. $\int \sqrt{a^2+x^2} d x=\frac{1}{2} x \sqrt{a^2+x^2}+\frac{1}{2} a^2 \log \left|x+\sqrt{a^2+x^2}\right|+C$

9. $\int \sqrt{\mathrm{x}^2-\mathrm{a}^2} \mathrm{dx}=\frac{1}{2} \mathrm{x} \sqrt{\mathrm{x}^2-\mathrm{a}^2}-\frac{1}{2} \mathrm{a}^2 \log \left|\mathrm{x}+\sqrt{\mathrm{x}^2-\mathrm{a}^2}\right|+C$


Following are some important substitutions useful in evaluating integrals.


$\begin{array}{c|| c } \mathbf { Expression } & {\mathbf { Substitution }} \\\\ \hline \\a^{2}+x^{2} & {x=a \tan \theta} {\text { or }} {x=a \cot \theta} \\ \\\hline \\a^{2}-x^{2} & {x=a \sin \theta} {\text { or } x=a \cos \theta}\\ \\ \hline \\x^{2}-a^{2} & {x=a \sec \theta} {\text { or } x=a \csc \theta} \\\\ \hline\\ \sqrt{\frac{a-x}{a+x}} {\text { or } \sqrt{\frac{a+x}{a-x}}} & {x=a \cos 2 \theta}\\ \\\hline\end{array}$


A special type of indefinite integration:

Working rule :
for (i) put $x=a \sin \theta$ or $a \cos \theta$
for (ii) Put $x=a \sec \theta$ or $a \operatorname{cosec} \theta$
for (iii) and (iv) Put $x=a \tan \theta$ or $a \cot \theta$
for (v) and (vi) Put $x=a \cos 2 \theta$
for (vii) and (viii) Put $x=a \cos ^2 \theta+b \sin ^2 \theta$
Integrals of the form :
(i) $\int \frac{d x}{x^2+a^2}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C$
(ii) $\int \frac{d x}{x^2-a^2}=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+C$
(iii) $\int \frac{d x}{a^2-x^2}=\frac{1}{2 a} \log \left|\frac{a+x}{a-x}\right|+C$
(iv) $\int \frac{d x}{\sqrt{a^2-x^2}}=\sin ^{-1}\left(\frac{x}{a}\right)+C$
(v) $\int \frac{d x}{\sqrt{a^2+x^2}}=\log \left|x+\sqrt{x^2+a^2}\right|+C$
(vi) $\int \frac{d x}{\sqrt{x^2-a^2}}=\log \left|x+\sqrt{x^2-a^2}\right|+C$

Proofs of all these formulas are as follows:

Integrals of Some Particular Functions

In this section, we mention below some important formulas of integrals and apply them for integrating many other related standard integrals:

(1) $\int \frac{d x}{x^2-a^2}=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+\mathrm{C}$
proofs of all these formulas area as follows:
We have $\frac{1}{x^2-a^2}-\frac{1}{(x-a)(x+a)}$

$\equiv \frac{1}{2 a}\left[\frac{(x+a)-(x-a)}{(x-a)(x+a)}\right]-\frac{1}{2 a}\left[\frac{1}{x-a}-\frac{1}{x+a}\right]$


Therefore, $\int \frac{d x}{x^2-a^2}=\frac{1}{2 a}\left[\int \frac{d x}{x-a}-\int \frac{d x}{x+a}\right]$

$\begin{aligned}
& \left.=\frac{1}{2 a}[\log |(x-a)|-\log \mid(x+a)]\right]+\mathrm{C} \\
& =\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+\mathrm{C}
\end{aligned}$

(2) In view of (1) above, we have

$\frac{1}{a^2-x^2}=\frac{1}{2 a}\left[\frac{(a+x)+(a-x)}{(a+x)(a-x)}\right]=\frac{1}{2 a}\left[\frac{1}{a-x}+\frac{1}{a+x}\right]$

Therefore, $\int \frac{d x}{a^2-x^2}=\frac{1}{2 a}\left[\int \frac{d x}{a-x}+\int \frac{d x}{a+x}\right]$

$\begin{aligned}
& -\frac{1}{2 a}[-\log |a-x|+\log |a+x|]+\mathrm{C} \\
& -\frac{1}{2 a} \log \left|\frac{a+x}{a-x}\right|+\mathrm{C}
\end{aligned}$

- Note The technique used in (1) will be explained in Section 7.5.

(3) Put $x=a \tan \theta$. Then $d x=a \sec ^2 \theta d \theta$.

Therefore, $\int \frac{d x}{x^2+a^2}-\int \frac{a \sec ^2 \theta d \theta}{a^2 \tan ^2 \theta+a^2}$

(4) Let $x=a \sec \theta$. Then $d x=a \sec \theta \tan \theta d \theta$.

$-\frac{1}{a} \int d \theta=\frac{1}{a} \theta+\mathrm{C}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+\mathrm{C}$


Therefore, $\quad \int \frac{d x}{\sqrt{x^2-a^2}}=\int \frac{a \sec \theta \tan \theta d \theta}{\sqrt{a^2 \sec ^2 \theta-a^2}}$
$-\int \sec \theta d \theta=\log |\sec \theta+\tan \theta|+C_1$

$=\log \left|\frac{x}{a}+\sqrt{\frac{x^2}{a^2}-1}\right|+C_1$

$-\log \left|x+\sqrt{x^2-a^2}\right|-\log |a|+C_1$

$=\log \left|x+\sqrt{x^2-a^2}\right|+C, \text { where } C=C_1-\log |a|$


(5) Let $x=a \tan \theta$. Then $d x=a \sec ^2 \theta \mathrm{d} \theta$.

$\begin{aligned}
\int \frac{d x}{\sqrt{a^2-x^2}} & =\int \frac{a \cos \theta d \theta}{\sqrt{a^2-a^2 \sin ^2 \theta}} \\
& =\int d \theta-\theta+\mathrm{C}-\sin ^{-1} \frac{x}{a}+\mathrm{C}
\end{aligned}$
Therefore, $\quad \int \frac{d x}{\sqrt{x^2+a^2}}=\int \frac{a \sec ^2 \theta d \theta}{\sqrt{a^2 \tan ^2 \theta+a^2}}$
$=\int \sec \theta d \theta-\log |(\sec \theta+\tan \theta)|+C_1$
$\begin{aligned}
& =\log \left|\frac{x}{a}+\sqrt{\frac{x^2}{a^2}+1}\right|+C_1 \\
& =\log \left|x+\sqrt{x^2+a^2}\right|-\log |a|+C_1 \\
& =\log \left|x+\sqrt{x^2+a^2}\right|+C, \text { where } C-C_1-\log |a|
\end{aligned}$

Recommended Video Based on Integrals of Particular Function


Solved Examples

Example 1: Evaluate $\int \frac{d x}{\sqrt{(x-a)(b-x)}}$

1) $2 \sin ^{-1} \sqrt{\left(\frac{x-a}{b-a}\right)}+c$

2) $2 \cos ^{-1} \sqrt{\left(\frac{x-a}{b-a}\right)}+c$

3) $2 \tan ^{-1} \sqrt{\left(\frac{x-a}{b-a}\right)}+c$

4) $2 \tan ^{-1} \sqrt{\left(\frac{x-a}{b-x}\right)}+c$

Solution

Writing $x=a \cos ^2 \theta+b \sin ^2 \theta=a+(b-a) \sin ^2 \theta$, the given integral becomes

$\begin{aligned}
& I=\int \frac{2(b-a) \sin \theta \cos \theta d \theta}{\left\{\left(a \cos ^2 \theta+b \sin ^2 \theta-a\right)\left(a \cos ^2 \theta+b \sin ^2 \theta-b\right)\right\}^{1 / 2}} \\
& =\int \frac{2(b-a) \sin \theta \cos \theta d \theta}{(b-a) \sin \theta \cos \theta}=\left(\frac{b-a}{b-a}\right) \int 2 d \theta
\end{aligned}$


$=2 \theta+c=2 \sin ^{-1} \sqrt{\left(\frac{x-a}{b-a}\right)}+c$
Hence, the answer is the option 1.

Example 2: Evaluate $\int \ln (\sqrt{1-x}+\sqrt{1+x}) d x$

1) $x \ln (\sqrt{1-x}+\sqrt{1+x})+\frac{x}{2}+\frac{1}{2} \sin ^{-1} x+c$

2) $x \ln (\sqrt{1-x}+\sqrt{1+x})-\frac{x}{2}+\frac{1}{2} \sin ^{-1} x+c$

3) $x \ln (\sqrt{1-x}+\sqrt{1+x})-\frac{x}{2}-\frac{1}{2} \sin ^{-1} x+c$

4) $x \ln (\sqrt{1-x}+\sqrt{1+x})-\frac{x}{2}+\frac{1}{2} \sin ^{-1} x+c$

Solution

We can do this question using Integration by parts

If we take

$u=\ln (\sqrt{1-x}+\sqrt{1+x}) \text { as the first function and } \mathrm{v}=1 \text { as the second function then }$


$\begin{aligned}
& \ln (\sqrt{1-x}+\sqrt{1+x}) \int 1 d x-\int\left(\frac{d}{d x}(\ln (\sqrt{1-x}+\sqrt{1+x})) \int 1 d x\right) d x \\
& =x \ln (\sqrt{1-x}+\sqrt{1+x})-\int \frac{1}{(\sqrt{1-x}+\sqrt{1+x})}\left(-\frac{1}{2 \sqrt{1-x}}+\frac{1}{2 \sqrt{1+x}}\right) x d x=x \ln (\sqrt{1-x}+\sqrt{1+x})-\frac{1}{2} \int x \frac{\sqrt{1-x^2}}{x \sqrt{1-x^2}} d x \\
& =x \ln (\sqrt{1-x}+\sqrt{1+x})-\frac{1}{2} \int d x+\frac{1}{2} \int \frac{1}{\sqrt{1-x^2}} d x
\end{aligned}$
$=x \ln (\sqrt{1-x}+\sqrt{1+x})-\frac{x}{2}+\frac{1}{2} \sin ^{-1} x+c$
Hence, the answer is the option (2).


Example 3: $\int\left(\frac{2 a+x}{a+x}\right) \sqrt{\frac{a-x}{a+x}} d x=$
1) $\sqrt{a^2-x^2}-2 a \sqrt{\frac{a-x}{a+x}}+c$
2) $-\sqrt{a^2-x^2}-2 a \sqrt{\frac{a-x}{a+x}}+c$
3) $\frac{1}{a} \tan ^{-1} \frac{x}{a}+\ln \left|x+\sqrt{a^2-x^2}\right|+c$
4) $\frac{1}{2 a} \ln \left|\frac{a+x}{a-x}\right|+\sin ^{-1} \frac{x}{a}+c$

Solution
As we learnt in
Special types of indefinite integration:
Integrals of the form:

$f\left(\sqrt{\frac{a-x}{a+x}}\right)_{\text {(ii) }} f\left(\sqrt{\frac{a+x}{a-x}}\right)$

wherein

The working rule is :

for (i) and (ii) Put $x=a \cos ($

$\begin{aligned}
& \quad \theta=\cos ^{-1} \frac{x}{a}(-a<x<a) \\
& \text { Put } I=-a \int \frac{(2+\cos \theta)(1-\cos \theta)}{1+\cos \theta} d \theta \\
& \text { and } \\
& =-a \int\left\{(1-\cos \theta)+\frac{1-\cos \theta}{1+\cos \theta}\right\} d \theta=-a\left(2 \tan \frac{\theta}{2}-\sin \theta\right)+c \\
& =\sqrt{a^2-x^2}-2 a \sqrt{\frac{a-x}{a+x}}+c
\end{aligned}$


Hence, the answer is the option 1.

Example 4: $\int \frac{d x}{x \sqrt{1-x^3}}=$
1) $\frac{1}{3} \log \left|\frac{\sqrt{1-x^3}-1}{\sqrt{1-x^3}+1}\right|+c$
2) $\frac{1}{3} \log \left|\frac{\sqrt{1-x^2}-1}{\sqrt{1-x^2}+1}\right|+c$
3) $\frac{1}{3} \log \left|\frac{1}{\sqrt{1-x^3}}\right|+c$
4) $\frac{1}{3} \log \left|1-x^3\right|+c$

Solution

As we learned,


$\int \frac{d x}{x \sqrt{1-x^3}}$


Put $1-x^3=t^2$

$\begin{aligned}
& -3 x^2 \mathrm{dx}=2 \text { tdt } \\
& =-\frac{2}{3} \int \frac{d t}{1-t^2}=\frac{1}{3} \log \left|\frac{\sqrt{1-x^3}-1}{\sqrt{1-x^3}+1}\right|+c
\end{aligned}$

Hence, the answer is the option 1.

Example 5: if $\int \sqrt{\frac{\cos x-\cos ^3 x}{\left(1-\cos ^3 x\right)}} d x=f(x)+c$, then $f(x)$ is equal to
1) $\frac{2}{3} \sin ^{-1}\left(\cos ^{3 / 2} x\right)$
2) $\frac{3}{2} \sin ^{-1}\left(\cos ^{3 / 2} x\right)$
3) $\frac{2}{3} \cos ^{-1}\left(\cos ^{3 / 2} x\right)$
4) None of these

4) None of these

Solution

As we learned in

Integration of Rational and irrational functions -

Integration in the form of :

$\begin{aligned} & \frac{d x}{\sqrt{a^2-x^2}} \\ & I=\int \sqrt{\frac{\cos x-\cos ^3 x}{1-\cos ^3 x}} d x=\int \frac{\sqrt{\cos x} \sqrt{1-\cos ^2 x}}{\sqrt{1-\left(\cos ^{3 / 2} x\right)^2}} d x \\ & \int \frac{\sqrt{\cos x} \sin x}{\sqrt{1-\left(\cos ^{3 / 2} x\right)^2}} d x \\ & \text { If } \cos ^{\frac{3}{2}} x=p, \text { then }\left(-\frac{3}{2} \cos ^{\frac{1}{2}} x \sin x\right) d x=d p \\ & I=-\frac{2}{3} \int \frac{d p}{\sqrt{1-p^2}}=-\frac{2}{3} \sin ^{-1}\left(\cos ^{\frac{3}{2} x}\right)=\frac{2}{3} \cos ^{-1}\left(\cos ^{\frac{3}{2}} x\right)+c_1\end{aligned}$

Hence, the answer is the option 3.

Summary

An indefinite integral, also known as an antiderivative, is a function that reverses the process of differentiation. It's an important concept of the calculus. In physics, integration is used to calculate quantities such as work, energy, and centre of mass.

Frequently Asked Questions (FAQs)

Q: What's the connection between the integrals of sin(x^2) and cos(x^2)?
A:
The integrals of sin(x^2) and cos(x^2) cannot be expressed in terms of elementary functions. They are related to Fresnel integrals, which are important in optics and signal processing. These integrals demonstrate that even simple-looking functions can have complex, non-elementary antiderivatives.
Q: How does the integral of csc^2(x) relate to the derivative of cot(x)?
A:
The integral of csc^2(x) is -cot(x) + C. This relationship is significant because csc^2(x) is the negative derivative of cot(x). It's a prime example of how recognizing derivative relationships can simplify integration, similar to the integral of sec^2(x) being tan(x) + C.
Q: Why is the integral of 1/(1-x^2) related to both arctanh(x) and arcsin(x)?
A:
The integral of 1/(1-x^2) is arctanh(x) + C for |x| < 1, and arcsin(x) + C for |x| ≤ 1. This dual nature arises from the relationship between hyperbolic and circular trigonometric functions. It demonstrates how the domain of the function can affect the form of its antiderivative.
Q: What's the significance of the integral of sin(x)/x in signal processing?
A:
The integral of sin(x)/x, while not expressible in terms of elementary functions, is crucial in signal processing. Its definite integral from -∞ to ∞ equals π, and the function sinc(x) = sin(x)/x plays a key role in sampling theory and Fourier transforms. This integral demonstrates the importance of non-elementary functions in applied mathematics.
Q: How does the integral of 1/(x ln(x)) relate to the natural logarithm function?
A:
The integral of 1/(x ln(x)) is ln|ln|x|| + C. This integral, known as the logarithmic integral, introduces a "double logarithm" and is important in number theory, particularly in the study of the distribution of prime numbers. It demonstrates how nested logarithms can arise from integration.
Q: Why is the integral of tan^2(x) not as straightforward as other trigonometric functions?
A:
The integral of tan^2(x) is tan(x) - x + C. This isn't as straightforward as other trigonometric integrals because it requires the use of the identity tan^2(x) = sec^2(x) - 1, followed by integrating sec^2(x) and x separately. It showcases the importance of trigonometric identities in integration.
Q: How does the integral of sqrt(x) relate to the power rule for integration?
A:
The integral of sqrt(x) is (2/3)x^(3/2) + C. This follows the general power rule for integration, where we add 1 to the exponent (1/2 becomes 3/2) and divide by the new exponent. It demonstrates how the power rule applies to fractional exponents, not just integers.
Q: What's special about the integral of e^(x^2)?
A:
The integral of e^(x^2) cannot be expressed in terms of elementary functions. This integral, known as the error function (when properly scaled), is an example of a function that requires special functions or numerical methods to evaluate. It demonstrates that not all seemingly simple integrals have elementary antiderivatives.
Q: How does the integral of 1/(ax+b) relate to natural logarithms?
A:
The integral of 1/(ax+b) is (1/a)ln|ax+b| + C. This is a generalization of the integral of 1/x and shows how linear functions in the denominator lead to natural logarithms in the antiderivative. The constant 1/a appears due to the chain rule, reflecting the impact of the coefficient of x on the result.
Q: How does the integral of ln(x) differ from other elementary functions?
A:
The integral of ln(x) is x ln(x) - x + C. This integral is unique because it combines algebraic and logarithmic functions. It doesn't follow the pattern of other elementary functions and is often solved using integration by parts, demonstrating the power of this technique.