Integral of Particular Functions: Examples

Integral of Particular Functions: Examples

Komal MiglaniUpdated on 13 Nov 2025, 07:28 PM IST

Imagine trying to calculate the distance a car travels when its speed keeps changing - that’s where integration comes in. The integral of particular functions helps us find total values like area, distance, and accumulation from varying rates. In calculus, mastering the integration of standard functions such as powers, exponentials, logarithms, and trigonometric functions forms the foundation for solving real-world problems in physics, engineering, and economics. This article covers key integration formulas, detailed examples, and step-by-step explanations to help you understand how to integrate different types of functions efficiently in mathematics.

Integral of Particular Functions: Examples
Integral of Particular Functions: Examples

Integrals of Particular Functions

Integration is the reverse process of differentiation. In integration, we find the function whose differential coefficient is given. The rate of change of a quantity $y$ with respect to another quantity $x$ is called the derivative or differential coefficient of $y$ with respect to $x$. Geometrically, differentiation represents the slope of the tangent to a function’s graph, while integration determines the area under the curve of that function.

Basic Integration Formulas for Particular Functions

This section covers the most commonly used standard integration formulas that form the foundation for solving complex calculus problems. These basic integrals, such as those involving $\frac{1}{x^2 + a^2}$, $\frac{1}{x^2 - a^2}$, and $\sqrt{a^2 - x^2}$, help simplify advanced integrations through substitution or reduction techniques.

1. Integral of $\frac{1}{x^2 + a^2}$

$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C$

Proof:

Put $x = a \tan \theta$, then $dx = a \sec^2 \theta , d\theta$

$\int \frac{dx}{x^2 + a^2} = \int \frac{a \sec^2 \theta , d\theta}{a^2 \tan^2 \theta + a^2} = \frac{1}{a} \int d\theta = \frac{1}{a} \theta + C = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C$

2. Integral of $\frac{1}{x^2 - a^2}$

$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left|\frac{x - a}{x + a}\right| + C$

Proof:

$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \int \left(\frac{1}{x - a} - \frac{1}{x + a}\right) dx = \frac{1}{2a} [\log|x - a| - \log|x + a|] + C = \frac{1}{2a} \log \left|\frac{x - a}{x + a}\right| + C$

3. Integral of $\frac{1}{a^2 - x^2}$

$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left|\frac{a + x}{a - x}\right| + C$

4. Integral of $\frac{1}{\sqrt{a^2 - x^2}}$

$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\frac{x}{a}\right) + C$

Proof:

Let $x = a \sin \theta$, then $dx = a \cos \theta , d\theta$

$\int \frac{dx}{\sqrt{a^2 - x^2}} = \int \frac{a \cos \theta , d\theta}{a \cos \theta} = \int d\theta = \theta + C = \sin^{-1}\left(\frac{x}{a}\right) + C$

5. Integral of $\frac{1}{\sqrt{a^2 + x^2}}$

$\int \frac{dx}{\sqrt{a^2 + x^2}} = \log \left|x + \sqrt{a^2 + x^2}\right| + C$

Proof:

Let $x = a \tan \theta$, then $dx = a \sec^2 \theta , d\theta$

$\int \frac{dx}{\sqrt{a^2 + x^2}} = \int \frac{a \sec^2 \theta , d\theta}{a \sec \theta} = \int \sec \theta , d\theta = \log|\sec \theta + \tan \theta| + C$

$= \log\left|\frac{x}{a} + \sqrt{\frac{x^2}{a^2} + 1}\right| + C = \log|x + \sqrt{x^2 + a^2}| + C$

6. Integral of $\frac{1}{\sqrt{x^2 - a^2}}$

$\int \frac{dx}{\sqrt{x^2 - a^2}} = \log \left|x + \sqrt{x^2 - a^2}\right| + C$

Proof:

Let $x = a \sec \theta$, then $dx = a \sec \theta \tan \theta , d\theta$

$\int \frac{dx}{\sqrt{x^2 - a^2}} = \int \frac{a \sec \theta \tan \theta , d\theta}{a \tan \theta} = \int \sec \theta , d\theta = \log|\sec \theta + \tan \theta| + C$

$= \log|x + \sqrt{x^2 - a^2}| + C$

Integrals Involving Square Roots

Integrals containing square root expressions such as $\sqrt{a^2 - x^2}$, $\sqrt{a^2 + x^2}$, or $\sqrt{x^2 - a^2}$ are common in problems related to geometry, physics, and engineering.

1. Integral of $\sqrt{a^2 - x^2}$

The standard result is:
$\int \sqrt{a^2 - x^2} , dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1}\left(\frac{x}{a}\right) + C$

Proof:
Let $I = \int \sqrt{a^2 - x^2} , dx$

Substitute $x = a \sin \theta \Rightarrow dx = a \cos \theta , d\theta$

Then,
$I = \int \sqrt{a^2 - a^2 \sin^2 \theta} \cdot a \cos \theta , d\theta$
$= a^2 \int \cos^2 \theta , d\theta$

Using the identity $\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$,
$I = \frac{a^2}{2} \int (1 + \cos 2\theta) , d\theta$

$= \frac{a^2}{2} \left(\theta + \frac{1}{2} \sin 2\theta\right) + C$

Now, substitute back $\sin \theta = \frac{x}{a}$ and $\sin 2\theta = 2 \sin \theta \cos \theta = \frac{2x\sqrt{a^2 - x^2}}{a^2}$

So,
$I = \frac{a^2}{2} \sin^{-1}\left(\frac{x}{a}\right) + \frac{x}{2} \sqrt{a^2 - x^2} + C$

Hence,
$\boxed{\int \sqrt{a^2 - x^2} , dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1}\left(\frac{x}{a}\right) + C}$

2. Integral of $\sqrt{a^2 + x^2}$

The standard result is:
$\int \sqrt{a^2 + x^2} , dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \log \left|x + \sqrt{a^2 + x^2}\right| + C$

Proof:
Let $I = \int \sqrt{a^2 + x^2} , dx$

We use the substitution $x = a \tan \theta \Rightarrow dx = a \sec^2 \theta , d\theta$

Then,
$I = \int \sqrt{a^2 + a^2 \tan^2 \theta} \cdot a \sec^2 \theta , d\theta$
$= a^2 \int \sec^3 \theta , d\theta$

We know that $\int \sec^3 \theta , d\theta = \frac{1}{2}(\sec \theta \tan \theta + \log |\sec \theta + \tan \theta|) + C$

So,
$I = \frac{a^2}{2} (\sec \theta \tan \theta + \log |\sec \theta + \tan \theta|) + C$

Now, convert back to $x$:
$\tan \theta = \frac{x}{a}$ and $\sec \theta = \frac{\sqrt{a^2 + x^2}}{a}$

Thus,
$\sec \theta \tan \theta = \frac{x \sqrt{a^2 + x^2}}{a^2}$

Substituting,
$I = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \log \left|x + \sqrt{a^2 + x^2}\right| + C$

Hence,
$\boxed{\int \sqrt{a^2 + x^2} , dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \log \left|x + \sqrt{a^2 + x^2}\right| + C}$

3. Integral of $\sqrt{x^2 - a^2}$

The standard result is:
$\int \sqrt{x^2 - a^2} , dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left|x + \sqrt{x^2 - a^2}\right| + C$

Proof:
Let $I = \int \sqrt{x^2 - a^2} , dx$

Substitute $x = a \sec \theta \Rightarrow dx = a \sec \theta \tan \theta , d\theta$

Then,
$I = \int \sqrt{a^2 \sec^2 \theta - a^2} \cdot a \sec \theta \tan \theta , d\theta$
$= a^2 \int \tan^2 \theta \sec \theta , d\theta$

Using $\tan^2 \theta = \sec^2 \theta - 1$,
$I = a^2 \int (\sec^3 \theta - \sec \theta) , d\theta$

Integrate each term:
$\int \sec^3 \theta , d\theta = \frac{1}{2}(\sec \theta \tan \theta + \log |\sec \theta + \tan \theta|)$
and $\int \sec \theta , d\theta = \log |\sec \theta + \tan \theta|$

So,
$I = \frac{a^2}{2} (\sec \theta \tan \theta - \log |\sec \theta + \tan \theta|) + C$

Now, express in terms of $x$:
$\sec \theta = \frac{x}{a}$, $\tan \theta = \frac{\sqrt{x^2 - a^2}}{a}$

Then,
$\sec \theta \tan \theta = \frac{x \sqrt{x^2 - a^2}}{a^2}$

Substitute back:
$I = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left|x + \sqrt{x^2 - a^2}\right| + C$

Hence,
$\boxed{\int \sqrt{x^2 - a^2} , dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left|x + \sqrt{x^2 - a^2}\right| + C}$

Standard Trigonometric Substitutions

This section explains the standard trigonometric substitutions used to simplify integrals involving quadratic expressions like $a^2 - x^2$, $a^2 + x^2$, and $x^2 - a^2$. By converting algebraic forms into trigonometric ones, these substitutions make integration more straightforward and are essential for solving complex calculus problems efficiently.

ExpressionSubstitution
$a^2 + x^2$$x = a \tan \theta$ or $x = a \cot \theta$
$a^2 - x^2$$x = a \sin \theta$ or $x = a \cos \theta$
$x^2 - a^2$$x = a \sec \theta$ or $x = a \csc \theta$
$\sqrt{\frac{a - x}{a + x}}$ or $\sqrt{\frac{a + x}{a - x}}$$x = a \cos 2\theta$

These substitutions are crucial for simplifying irrational expressions and converting them into basic trigonometric integrals.

Working Rules for Substitution Method

  1. For $\sqrt{a^2 - x^2}$, put $x = a \sin \theta$ or $x = a \cos \theta$

  2. For $\sqrt{x^2 - a^2}$, put $x = a \sec \theta$ or $x = a \csc \theta$

  3. For $\sqrt{a^2 + x^2}$, put $x = a \tan \theta$ or $x = a \cot \theta$

  4. For $\sqrt{\frac{a - x}{a + x}}$, put $x = a \cos 2\theta$

  5. Simplify and integrate using standard trigonometric identities

JEE Main Highest Scoring Chapters & Topics
Focus on high-weightage topics with this eBook and prepare smarter. Gain accuracy, speed, and a better chance at scoring higher.
Download E-book

Important Integrals and Their Proofs

Integration often involves recognizing standard patterns and applying known results. The following are some of the most important integrals and their proofs, which frequently appear in competitive exams and higher-level calculus. Each of these can be derived using basic algebraic manipulation and substitution methods.

1. Integral of $\frac{1}{x^2 - a^2}$

The integral is given by:
$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left|\frac{x - a}{x + a}\right| + C$

Proof:
We start by factorizing the denominator:
$x^2 - a^2 = (x - a)(x + a)$

Now, resolve into partial fractions:
$\frac{1}{x^2 - a^2} = \frac{A}{x - a} + \frac{B}{x + a}$

Solving for $A$ and $B$, we get $A = \frac{1}{2a}$ and $B = -\frac{1}{2a}$.
So,
$\frac{1}{x^2 - a^2} = \frac{1}{2a} \left(\frac{1}{x - a} - \frac{1}{x + a}\right)$

Integrating both sides,
$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \int \left(\frac{1}{x - a} - \frac{1}{x + a}\right) dx$

$= \frac{1}{2a} [\log|x - a| - \log|x + a|] + C$

Using logarithmic property,
$\log|x - a| - \log|x + a| = \log\left|\frac{x - a}{x + a}\right|$

Hence,
$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left|\frac{x - a}{x + a}\right| + C$

2. Integral of $\frac{1}{a^2 - x^2}$

The integral is given by:
$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left|\frac{a + x}{a - x}\right| + C$

Proof:
We can write:
$\frac{1}{a^2 - x^2} = \frac{1}{(a - x)(a + x)}$

Taking partial fractions,
$\frac{1}{a^2 - x^2} = \frac{A}{a - x} + \frac{B}{a + x}$

Solving for $A$ and $B$, we get $A = \frac{1}{2a}$ and $B = \frac{1}{2a}$.
So,
$\frac{1}{a^2 - x^2} = \frac{1}{2a} \left(\frac{1}{a - x} + \frac{1}{a + x}\right)$

Integrating both sides,
$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \int \left(\frac{1}{a - x} + \frac{1}{a + x}\right) dx$

Now integrate term by term:
$= \frac{1}{2a} [-\log|a - x| + \log|a + x|] + C$

Simplifying,
$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left|\frac{a + x}{a - x}\right| + C$

3. Integral of $\frac{1}{x^2 + a^2}$

The integral is given by:
$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C$

Proof:
Let $I = \int \frac{dx}{x^2 + a^2}$

We know that the derivative of $\tan^{-1}\left(\frac{x}{a}\right)$ is $\frac{a}{x^2 + a^2}$.

So, to make the numerator $a$, multiply and divide the integrand by $a$:
$I = \frac{1}{a} \int \frac{a , dx}{x^2 + a^2}$

Now, $\int \frac{a , dx}{x^2 + a^2} = \tan^{-1}\left(\frac{x}{a}\right)$

Hence, $I = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C$

Solved Examples based on Integration of Particular Functions

Example 1: Evaluate $\int \frac{d x}{\sqrt{(x-a)(b-x)}}$

1) $2 \sin ^{-1} \sqrt{\left(\frac{x-a}{b-a}\right)}+c$

2) $2 \cos ^{-1} \sqrt{\left(\frac{x-a}{b-a}\right)}+c$

3) $2 \tan ^{-1} \sqrt{\left(\frac{x-a}{b-a}\right)}+c$

4) $2 \tan ^{-1} \sqrt{\left(\frac{x-a}{b-x}\right)}+c$

Solution

Writing $x=a \cos ^2 \theta+b \sin ^2 \theta=a+(b-a) \sin ^2 \theta$, the given integral becomes

$\begin{aligned}
& I=\int \frac{2(b-a) \sin \theta \cos \theta d \theta}{\left\{\left(a \cos ^2 \theta+b \sin ^2 \theta-a\right)\left(a \cos ^2 \theta+b \sin ^2 \theta-b\right)\right\}^{1 / 2}} \\
& =\int \frac{2(b-a) \sin \theta \cos \theta d \theta}{(b-a) \sin \theta \cos \theta}=\left(\frac{b-a}{b-a}\right) \int 2 d \theta
\end{aligned}$

$=2 \theta+c=2 \sin ^{-1} \sqrt{\left(\frac{x-a}{b-a}\right)}+c$
Hence, the answer is the option 1.

Example 2: Evaluate $\int \ln (\sqrt{1-x}+\sqrt{1+x}) d x$

1) $x \ln (\sqrt{1-x}+\sqrt{1+x})+\frac{x}{2}+\frac{1}{2} \sin ^{-1} x+c$

2) $x \ln (\sqrt{1-x}+\sqrt{1+x})-\frac{x}{2}+\frac{1}{2} \sin ^{-1} x+c$

3) $x \ln (\sqrt{1-x}+\sqrt{1+x})-\frac{x}{2}-\frac{1}{2} \sin ^{-1} x+c$

4) $x \ln (\sqrt{1-x}+\sqrt{1+x})-\frac{x}{2}+\frac{1}{2} \sin ^{-1} x+c$

Solution

We can do this question using Integration by parts

If we take

$u=\ln (\sqrt{1-x}+\sqrt{1+x}) \text { as the first function and } \mathrm{v}=1 \text { as the second function then }$

$\begin{aligned}
& \ln (\sqrt{1-x}+\sqrt{1+x}) \int 1 d x-\int\left(\frac{d}{d x}(\ln (\sqrt{1-x}+\sqrt{1+x})) \int 1 d x\right) d x \\
& =x \ln (\sqrt{1-x}+\sqrt{1+x})-\int \frac{1}{(\sqrt{1-x}+\sqrt{1+x})}\left(-\frac{1}{2 \sqrt{1-x}}+\frac{1}{2 \sqrt{1+x}}\right) x d x=x \ln (\sqrt{1-x}+\sqrt{1+x})-\frac{1}{2} \int x \frac{\sqrt{1-x^2}}{x \sqrt{1-x^2}} d x \\
& =x \ln (\sqrt{1-x}+\sqrt{1+x})-\frac{1}{2} \int d x+\frac{1}{2} \int \frac{1}{\sqrt{1-x^2}} d x
\end{aligned}$
$=x \ln (\sqrt{1-x}+\sqrt{1+x})-\frac{x}{2}+\frac{1}{2} \sin ^{-1} x+c$
Hence, the answer is the option (2).

Example 3: $\int\left(\frac{2 a+x}{a+x}\right) \sqrt{\frac{a-x}{a+x}} d x=$
1) $\sqrt{a^2-x^2}-2 a \sqrt{\frac{a-x}{a+x}}+c$
2) $-\sqrt{a^2-x^2}-2 a \sqrt{\frac{a-x}{a+x}}+c$
3) $\frac{1}{a} \tan ^{-1} \frac{x}{a}+\ln \left|x+\sqrt{a^2-x^2}\right|+c$
4) $\frac{1}{2 a} \ln \left|\frac{a+x}{a-x}\right|+\sin ^{-1} \frac{x}{a}+c$

Solution
As we learnt in
Special types of indefinite integration:
Integrals of the form:

$f\left(\sqrt{\frac{a-x}{a+x}}\right)_{\text {(ii) }} f\left(\sqrt{\frac{a+x}{a-x}}\right)$

wherein

The working rule is :

for (i) and (ii) Put $x=a \cos ($

$\begin{aligned}
& \quad \theta=\cos ^{-1} \frac{x}{a}(-a<x<a) \\
& \text { Put } I=-a \int \frac{(2+\cos \theta)(1-\cos \theta)}{1+\cos \theta} d \theta \\
& \text { and } \\
& =-a \int\left\{(1-\cos \theta)+\frac{1-\cos \theta}{1+\cos \theta}\right\} d \theta=-a\left(2 \tan \frac{\theta}{2}-\sin \theta\right)+c \\
& =\sqrt{a^2-x^2}-2 a \sqrt{\frac{a-x}{a+x}}+c
\end{aligned}$

Hence, the answer is the option 1.

Example 4: $\int \frac{d x}{x \sqrt{1-x^3}}=$
1) $\frac{1}{3} \log \left|\frac{\sqrt{1-x^3}-1}{\sqrt{1-x^3}+1}\right|+c$
2) $\frac{1}{3} \log \left|\frac{\sqrt{1-x^2}-1}{\sqrt{1-x^2}+1}\right|+c$
3) $\frac{1}{3} \log \left|\frac{1}{\sqrt{1-x^3}}\right|+c$
4) $\frac{1}{3} \log \left|1-x^3\right|+c$

Solution

As we learned,

$\int \frac{d x}{x \sqrt{1-x^3}}$
Put $1-x^3=t^2$

$\begin{aligned}
& -3 x^2 \mathrm{dx}=2 \text { tdt } \\
& =-\frac{2}{3} \int \frac{d t}{1-t^2}=\frac{1}{3} \log \left|\frac{\sqrt{1-x^3}-1}{\sqrt{1-x^3}+1}\right|+c
\end{aligned}$

Hence, the answer is the option 1.

Example 5: if $\int \sqrt{\frac{\cos x-\cos ^3 x}{\left(1-\cos ^3 x\right)}} d x=f(x)+c$, then $f(x)$ is equal to
1) $\frac{2}{3} \sin ^{-1}\left(\cos ^{3 / 2} x\right)$
2) $\frac{3}{2} \sin ^{-1}\left(\cos ^{3 / 2} x\right)$
3) $\frac{2}{3} \cos ^{-1}\left(\cos ^{3 / 2} x\right)$
4) None of these

Solution

As we learned in

Integration of Rational and irrational functions -

Integration in the form of :

$\begin{aligned} & \frac{d x}{\sqrt{a^2-x^2}} \\ & I=\int \sqrt{\frac{\cos x-\cos ^3 x}{1-\cos ^3 x}} d x=\int \frac{\sqrt{\cos x} \sqrt{1-\cos ^2 x}}{\sqrt{1-\left(\cos ^{3 / 2} x\right)^2}} d x \\ & \int \frac{\sqrt{\cos x} \sin x}{\sqrt{1-\left(\cos ^{3 / 2} x\right)^2}} d x \\ & \text { If } \cos ^{\frac{3}{2}} x=p, \text { then }\left(-\frac{3}{2} \cos ^{\frac{1}{2}} x \sin x\right) d x=d p \\ & I=-\frac{2}{3} \int \frac{d p}{\sqrt{1-p^2}}=-\frac{2}{3} \sin ^{-1}\left(\cos ^{\frac{3}{2} x}\right)=\frac{2}{3} \cos ^{-1}\left(\cos ^{\frac{3}{2}} x\right)+c_1\end{aligned}$

Hence, the answer is the option 3.

List of Topics Related to Integral of Particular Functions

Here, you’ll find a list of key topics associated with the integrals of particular functions. This section provides a structured overview to help you navigate through different types of integrals, their substitutions, and applications in problem-solving.

Application of Integrals

Integration as an inverse process of differentiation

Indefinite Integrals

Integration by Parts

Application of Inequality in Definite Integration

NCERT Resources

We have provided below the important NCERT resources including the NCERT Maths notes, exemplar solutions and exercises solutions for the Chapter 7 - Integrals to help you gain more understanding towards the chapter.

NCERT Class 12 Maths Notes for Chapter 7 - Integrals

NCERT Class 12 Maths Solutions for Chapter 7 - Integrals

NCERT Class 12 Maths Exemplar Solutions for Chapter 7 - Integrals

Frequently Asked Questions (FAQs)

Q: How do you solve $\int \frac{1}{x}dx$?
A:

The integral is $\int \frac{1}{x}dx = \ln|x| + C$.

Q: How can you integrate $\sin(ax)$ and $\cos(ax)$?
A:

The integrals of these trigonometric functions are $\int \sin(ax) , dx = -\frac{1}{a}\cos(ax) + C$ and $\int \cos(ax) , dx = \frac{1}{a}\sin(ax) + C$.

Q: How does substitution help in integrating particular functions?
A:

Substitution changes the variable in an integral to make it simpler. By choosing an appropriate new variable, complicated integrals can be transformed into standard forms that are easier to solve.

Q: What is integration by parts and when is it used?
A:

Integration by parts is a technique for integrating the product of two functions. It is particularly useful when direct formulas do not apply, and is based on reversing the product rule from differentiation.

Q: What is the role of the constant of integration C?
A:

The constant of integration C is always added to indefinite integrals because differentiation of any constant is zero. This ensures that all possible antiderivatives are represented.