Imagine trying to calculate the distance a car travels when its speed keeps changing - that’s where integration comes in. The integral of particular functions helps us find total values like area, distance, and accumulation from varying rates. In calculus, mastering the integration of standard functions such as powers, exponentials, logarithms, and trigonometric functions forms the foundation for solving real-world problems in physics, engineering, and economics. This article covers key integration formulas, detailed examples, and step-by-step explanations to help you understand how to integrate different types of functions efficiently in mathematics.
Integration is the reverse process of differentiation. In integration, we find the function whose differential coefficient is given. The rate of change of a quantity $y$ with respect to another quantity $x$ is called the derivative or differential coefficient of $y$ with respect to $x$. Geometrically, differentiation represents the slope of the tangent to a function’s graph, while integration determines the area under the curve of that function.
This section covers the most commonly used standard integration formulas that form the foundation for solving complex calculus problems. These basic integrals, such as those involving $\frac{1}{x^2 + a^2}$, $\frac{1}{x^2 - a^2}$, and $\sqrt{a^2 - x^2}$, help simplify advanced integrations through substitution or reduction techniques.
$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C$
Proof:
Put $x = a \tan \theta$, then $dx = a \sec^2 \theta , d\theta$
$\int \frac{dx}{x^2 + a^2} = \int \frac{a \sec^2 \theta , d\theta}{a^2 \tan^2 \theta + a^2} = \frac{1}{a} \int d\theta = \frac{1}{a} \theta + C = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C$
$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left|\frac{x - a}{x + a}\right| + C$
Proof:
$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \int \left(\frac{1}{x - a} - \frac{1}{x + a}\right) dx = \frac{1}{2a} [\log|x - a| - \log|x + a|] + C = \frac{1}{2a} \log \left|\frac{x - a}{x + a}\right| + C$
$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left|\frac{a + x}{a - x}\right| + C$
$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\frac{x}{a}\right) + C$
Proof:
Let $x = a \sin \theta$, then $dx = a \cos \theta , d\theta$
$\int \frac{dx}{\sqrt{a^2 - x^2}} = \int \frac{a \cos \theta , d\theta}{a \cos \theta} = \int d\theta = \theta + C = \sin^{-1}\left(\frac{x}{a}\right) + C$
$\int \frac{dx}{\sqrt{a^2 + x^2}} = \log \left|x + \sqrt{a^2 + x^2}\right| + C$
Proof:
Let $x = a \tan \theta$, then $dx = a \sec^2 \theta , d\theta$
$\int \frac{dx}{\sqrt{a^2 + x^2}} = \int \frac{a \sec^2 \theta , d\theta}{a \sec \theta} = \int \sec \theta , d\theta = \log|\sec \theta + \tan \theta| + C$
$= \log\left|\frac{x}{a} + \sqrt{\frac{x^2}{a^2} + 1}\right| + C = \log|x + \sqrt{x^2 + a^2}| + C$
$\int \frac{dx}{\sqrt{x^2 - a^2}} = \log \left|x + \sqrt{x^2 - a^2}\right| + C$
Proof:
Let $x = a \sec \theta$, then $dx = a \sec \theta \tan \theta , d\theta$
$\int \frac{dx}{\sqrt{x^2 - a^2}} = \int \frac{a \sec \theta \tan \theta , d\theta}{a \tan \theta} = \int \sec \theta , d\theta = \log|\sec \theta + \tan \theta| + C$
$= \log|x + \sqrt{x^2 - a^2}| + C$
Integrals containing square root expressions such as $\sqrt{a^2 - x^2}$, $\sqrt{a^2 + x^2}$, or $\sqrt{x^2 - a^2}$ are common in problems related to geometry, physics, and engineering.
The standard result is:
$\int \sqrt{a^2 - x^2} , dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1}\left(\frac{x}{a}\right) + C$
Proof:
Let $I = \int \sqrt{a^2 - x^2} , dx$
Substitute $x = a \sin \theta \Rightarrow dx = a \cos \theta , d\theta$
Then,
$I = \int \sqrt{a^2 - a^2 \sin^2 \theta} \cdot a \cos \theta , d\theta$
$= a^2 \int \cos^2 \theta , d\theta$
Using the identity $\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$,
$I = \frac{a^2}{2} \int (1 + \cos 2\theta) , d\theta$
$= \frac{a^2}{2} \left(\theta + \frac{1}{2} \sin 2\theta\right) + C$
Now, substitute back $\sin \theta = \frac{x}{a}$ and $\sin 2\theta = 2 \sin \theta \cos \theta = \frac{2x\sqrt{a^2 - x^2}}{a^2}$
So,
$I = \frac{a^2}{2} \sin^{-1}\left(\frac{x}{a}\right) + \frac{x}{2} \sqrt{a^2 - x^2} + C$
Hence,
$\boxed{\int \sqrt{a^2 - x^2} , dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1}\left(\frac{x}{a}\right) + C}$
The standard result is:
$\int \sqrt{a^2 + x^2} , dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \log \left|x + \sqrt{a^2 + x^2}\right| + C$
Proof:
Let $I = \int \sqrt{a^2 + x^2} , dx$
We use the substitution $x = a \tan \theta \Rightarrow dx = a \sec^2 \theta , d\theta$
Then,
$I = \int \sqrt{a^2 + a^2 \tan^2 \theta} \cdot a \sec^2 \theta , d\theta$
$= a^2 \int \sec^3 \theta , d\theta$
We know that $\int \sec^3 \theta , d\theta = \frac{1}{2}(\sec \theta \tan \theta + \log |\sec \theta + \tan \theta|) + C$
So,
$I = \frac{a^2}{2} (\sec \theta \tan \theta + \log |\sec \theta + \tan \theta|) + C$
Now, convert back to $x$:
$\tan \theta = \frac{x}{a}$ and $\sec \theta = \frac{\sqrt{a^2 + x^2}}{a}$
Thus,
$\sec \theta \tan \theta = \frac{x \sqrt{a^2 + x^2}}{a^2}$
Substituting,
$I = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \log \left|x + \sqrt{a^2 + x^2}\right| + C$
Hence,
$\boxed{\int \sqrt{a^2 + x^2} , dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \log \left|x + \sqrt{a^2 + x^2}\right| + C}$
The standard result is:
$\int \sqrt{x^2 - a^2} , dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left|x + \sqrt{x^2 - a^2}\right| + C$
Proof:
Let $I = \int \sqrt{x^2 - a^2} , dx$
Substitute $x = a \sec \theta \Rightarrow dx = a \sec \theta \tan \theta , d\theta$
Then,
$I = \int \sqrt{a^2 \sec^2 \theta - a^2} \cdot a \sec \theta \tan \theta , d\theta$
$= a^2 \int \tan^2 \theta \sec \theta , d\theta$
Using $\tan^2 \theta = \sec^2 \theta - 1$,
$I = a^2 \int (\sec^3 \theta - \sec \theta) , d\theta$
Integrate each term:
$\int \sec^3 \theta , d\theta = \frac{1}{2}(\sec \theta \tan \theta + \log |\sec \theta + \tan \theta|)$
and $\int \sec \theta , d\theta = \log |\sec \theta + \tan \theta|$
So,
$I = \frac{a^2}{2} (\sec \theta \tan \theta - \log |\sec \theta + \tan \theta|) + C$
Now, express in terms of $x$:
$\sec \theta = \frac{x}{a}$, $\tan \theta = \frac{\sqrt{x^2 - a^2}}{a}$
Then,
$\sec \theta \tan \theta = \frac{x \sqrt{x^2 - a^2}}{a^2}$
Substitute back:
$I = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left|x + \sqrt{x^2 - a^2}\right| + C$
Hence,
$\boxed{\int \sqrt{x^2 - a^2} , dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left|x + \sqrt{x^2 - a^2}\right| + C}$
This section explains the standard trigonometric substitutions used to simplify integrals involving quadratic expressions like $a^2 - x^2$, $a^2 + x^2$, and $x^2 - a^2$. By converting algebraic forms into trigonometric ones, these substitutions make integration more straightforward and are essential for solving complex calculus problems efficiently.
| Expression | Substitution |
|---|---|
| $a^2 + x^2$ | $x = a \tan \theta$ or $x = a \cot \theta$ |
| $a^2 - x^2$ | $x = a \sin \theta$ or $x = a \cos \theta$ |
| $x^2 - a^2$ | $x = a \sec \theta$ or $x = a \csc \theta$ |
| $\sqrt{\frac{a - x}{a + x}}$ or $\sqrt{\frac{a + x}{a - x}}$ | $x = a \cos 2\theta$ |
These substitutions are crucial for simplifying irrational expressions and converting them into basic trigonometric integrals.
For $\sqrt{a^2 - x^2}$, put $x = a \sin \theta$ or $x = a \cos \theta$
For $\sqrt{x^2 - a^2}$, put $x = a \sec \theta$ or $x = a \csc \theta$
For $\sqrt{a^2 + x^2}$, put $x = a \tan \theta$ or $x = a \cot \theta$
For $\sqrt{\frac{a - x}{a + x}}$, put $x = a \cos 2\theta$
Simplify and integrate using standard trigonometric identities
Integration often involves recognizing standard patterns and applying known results. The following are some of the most important integrals and their proofs, which frequently appear in competitive exams and higher-level calculus. Each of these can be derived using basic algebraic manipulation and substitution methods.
The integral is given by:
$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left|\frac{x - a}{x + a}\right| + C$
Proof:
We start by factorizing the denominator:
$x^2 - a^2 = (x - a)(x + a)$
Now, resolve into partial fractions:
$\frac{1}{x^2 - a^2} = \frac{A}{x - a} + \frac{B}{x + a}$
Solving for $A$ and $B$, we get $A = \frac{1}{2a}$ and $B = -\frac{1}{2a}$.
So,
$\frac{1}{x^2 - a^2} = \frac{1}{2a} \left(\frac{1}{x - a} - \frac{1}{x + a}\right)$
Integrating both sides,
$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \int \left(\frac{1}{x - a} - \frac{1}{x + a}\right) dx$
$= \frac{1}{2a} [\log|x - a| - \log|x + a|] + C$
Using logarithmic property,
$\log|x - a| - \log|x + a| = \log\left|\frac{x - a}{x + a}\right|$
Hence,
$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left|\frac{x - a}{x + a}\right| + C$
The integral is given by:
$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left|\frac{a + x}{a - x}\right| + C$
Proof:
We can write:
$\frac{1}{a^2 - x^2} = \frac{1}{(a - x)(a + x)}$
Taking partial fractions,
$\frac{1}{a^2 - x^2} = \frac{A}{a - x} + \frac{B}{a + x}$
Solving for $A$ and $B$, we get $A = \frac{1}{2a}$ and $B = \frac{1}{2a}$.
So,
$\frac{1}{a^2 - x^2} = \frac{1}{2a} \left(\frac{1}{a - x} + \frac{1}{a + x}\right)$
Integrating both sides,
$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \int \left(\frac{1}{a - x} + \frac{1}{a + x}\right) dx$
Now integrate term by term:
$= \frac{1}{2a} [-\log|a - x| + \log|a + x|] + C$
Simplifying,
$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left|\frac{a + x}{a - x}\right| + C$
The integral is given by:
$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C$
Proof:
Let $I = \int \frac{dx}{x^2 + a^2}$
We know that the derivative of $\tan^{-1}\left(\frac{x}{a}\right)$ is $\frac{a}{x^2 + a^2}$.
So, to make the numerator $a$, multiply and divide the integrand by $a$:
$I = \frac{1}{a} \int \frac{a , dx}{x^2 + a^2}$
Now, $\int \frac{a , dx}{x^2 + a^2} = \tan^{-1}\left(\frac{x}{a}\right)$
Hence, $I = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C$
Example 1: Evaluate $\int \frac{d x}{\sqrt{(x-a)(b-x)}}$
1) $2 \sin ^{-1} \sqrt{\left(\frac{x-a}{b-a}\right)}+c$
2) $2 \cos ^{-1} \sqrt{\left(\frac{x-a}{b-a}\right)}+c$
3) $2 \tan ^{-1} \sqrt{\left(\frac{x-a}{b-a}\right)}+c$
4) $2 \tan ^{-1} \sqrt{\left(\frac{x-a}{b-x}\right)}+c$
Solution
Writing $x=a \cos ^2 \theta+b \sin ^2 \theta=a+(b-a) \sin ^2 \theta$, the given integral becomes
$\begin{aligned}
& I=\int \frac{2(b-a) \sin \theta \cos \theta d \theta}{\left\{\left(a \cos ^2 \theta+b \sin ^2 \theta-a\right)\left(a \cos ^2 \theta+b \sin ^2 \theta-b\right)\right\}^{1 / 2}} \\
& =\int \frac{2(b-a) \sin \theta \cos \theta d \theta}{(b-a) \sin \theta \cos \theta}=\left(\frac{b-a}{b-a}\right) \int 2 d \theta
\end{aligned}$
$=2 \theta+c=2 \sin ^{-1} \sqrt{\left(\frac{x-a}{b-a}\right)}+c$
Hence, the answer is the option 1.
Example 2: Evaluate $\int \ln (\sqrt{1-x}+\sqrt{1+x}) d x$
1) $x \ln (\sqrt{1-x}+\sqrt{1+x})+\frac{x}{2}+\frac{1}{2} \sin ^{-1} x+c$
2) $x \ln (\sqrt{1-x}+\sqrt{1+x})-\frac{x}{2}+\frac{1}{2} \sin ^{-1} x+c$
3) $x \ln (\sqrt{1-x}+\sqrt{1+x})-\frac{x}{2}-\frac{1}{2} \sin ^{-1} x+c$
4) $x \ln (\sqrt{1-x}+\sqrt{1+x})-\frac{x}{2}+\frac{1}{2} \sin ^{-1} x+c$
Solution
We can do this question using Integration by parts
If we take
$u=\ln (\sqrt{1-x}+\sqrt{1+x}) \text { as the first function and } \mathrm{v}=1 \text { as the second function then }$
$\begin{aligned}
& \ln (\sqrt{1-x}+\sqrt{1+x}) \int 1 d x-\int\left(\frac{d}{d x}(\ln (\sqrt{1-x}+\sqrt{1+x})) \int 1 d x\right) d x \\
& =x \ln (\sqrt{1-x}+\sqrt{1+x})-\int \frac{1}{(\sqrt{1-x}+\sqrt{1+x})}\left(-\frac{1}{2 \sqrt{1-x}}+\frac{1}{2 \sqrt{1+x}}\right) x d x=x \ln (\sqrt{1-x}+\sqrt{1+x})-\frac{1}{2} \int x \frac{\sqrt{1-x^2}}{x \sqrt{1-x^2}} d x \\
& =x \ln (\sqrt{1-x}+\sqrt{1+x})-\frac{1}{2} \int d x+\frac{1}{2} \int \frac{1}{\sqrt{1-x^2}} d x
\end{aligned}$
$=x \ln (\sqrt{1-x}+\sqrt{1+x})-\frac{x}{2}+\frac{1}{2} \sin ^{-1} x+c$
Hence, the answer is the option (2).
Example 3: $\int\left(\frac{2 a+x}{a+x}\right) \sqrt{\frac{a-x}{a+x}} d x=$
1) $\sqrt{a^2-x^2}-2 a \sqrt{\frac{a-x}{a+x}}+c$
2) $-\sqrt{a^2-x^2}-2 a \sqrt{\frac{a-x}{a+x}}+c$
3) $\frac{1}{a} \tan ^{-1} \frac{x}{a}+\ln \left|x+\sqrt{a^2-x^2}\right|+c$
4) $\frac{1}{2 a} \ln \left|\frac{a+x}{a-x}\right|+\sin ^{-1} \frac{x}{a}+c$
Solution
As we learnt in
Special types of indefinite integration:
Integrals of the form:
$f\left(\sqrt{\frac{a-x}{a+x}}\right)_{\text {(ii) }} f\left(\sqrt{\frac{a+x}{a-x}}\right)$
wherein
The working rule is :
for (i) and (ii) Put $x=a \cos ($
$\begin{aligned}
& \quad \theta=\cos ^{-1} \frac{x}{a}(-a<x<a) \\
& \text { Put } I=-a \int \frac{(2+\cos \theta)(1-\cos \theta)}{1+\cos \theta} d \theta \\
& \text { and } \\
& =-a \int\left\{(1-\cos \theta)+\frac{1-\cos \theta}{1+\cos \theta}\right\} d \theta=-a\left(2 \tan \frac{\theta}{2}-\sin \theta\right)+c \\
& =\sqrt{a^2-x^2}-2 a \sqrt{\frac{a-x}{a+x}}+c
\end{aligned}$
Hence, the answer is the option 1.
Example 4: $\int \frac{d x}{x \sqrt{1-x^3}}=$
1) $\frac{1}{3} \log \left|\frac{\sqrt{1-x^3}-1}{\sqrt{1-x^3}+1}\right|+c$
2) $\frac{1}{3} \log \left|\frac{\sqrt{1-x^2}-1}{\sqrt{1-x^2}+1}\right|+c$
3) $\frac{1}{3} \log \left|\frac{1}{\sqrt{1-x^3}}\right|+c$
4) $\frac{1}{3} \log \left|1-x^3\right|+c$
Solution
As we learned,
$\int \frac{d x}{x \sqrt{1-x^3}}$
Put $1-x^3=t^2$
$\begin{aligned}
& -3 x^2 \mathrm{dx}=2 \text { tdt } \\
& =-\frac{2}{3} \int \frac{d t}{1-t^2}=\frac{1}{3} \log \left|\frac{\sqrt{1-x^3}-1}{\sqrt{1-x^3}+1}\right|+c
\end{aligned}$
Hence, the answer is the option 1.
Example 5: if $\int \sqrt{\frac{\cos x-\cos ^3 x}{\left(1-\cos ^3 x\right)}} d x=f(x)+c$, then $f(x)$ is equal to
1) $\frac{2}{3} \sin ^{-1}\left(\cos ^{3 / 2} x\right)$
2) $\frac{3}{2} \sin ^{-1}\left(\cos ^{3 / 2} x\right)$
3) $\frac{2}{3} \cos ^{-1}\left(\cos ^{3 / 2} x\right)$
4) None of these
Solution
As we learned in
Integration of Rational and irrational functions -
Integration in the form of :
$\begin{aligned} & \frac{d x}{\sqrt{a^2-x^2}} \\ & I=\int \sqrt{\frac{\cos x-\cos ^3 x}{1-\cos ^3 x}} d x=\int \frac{\sqrt{\cos x} \sqrt{1-\cos ^2 x}}{\sqrt{1-\left(\cos ^{3 / 2} x\right)^2}} d x \\ & \int \frac{\sqrt{\cos x} \sin x}{\sqrt{1-\left(\cos ^{3 / 2} x\right)^2}} d x \\ & \text { If } \cos ^{\frac{3}{2}} x=p, \text { then }\left(-\frac{3}{2} \cos ^{\frac{1}{2}} x \sin x\right) d x=d p \\ & I=-\frac{2}{3} \int \frac{d p}{\sqrt{1-p^2}}=-\frac{2}{3} \sin ^{-1}\left(\cos ^{\frac{3}{2} x}\right)=\frac{2}{3} \cos ^{-1}\left(\cos ^{\frac{3}{2}} x\right)+c_1\end{aligned}$
Hence, the answer is the option 3.
Here, you’ll find a list of key topics associated with the integrals of particular functions. This section provides a structured overview to help you navigate through different types of integrals, their substitutions, and applications in problem-solving.
Integration as an inverse process of differentiation
We have provided below the important NCERT resources including the NCERT Maths notes, exemplar solutions and exercises solutions for the Chapter 7 - Integrals to help you gain more understanding towards the chapter.
NCERT Class 12 Maths Notes for Chapter 7 - Integrals
NCERT Class 12 Maths Solutions for Chapter 7 - Integrals
NCERT Class 12 Maths Exemplar Solutions for Chapter 7 - Integrals
In this section, we have provided the practice questions based on integrals of particular functions along with topics related to it.
Integrals Of Particular Function- Practice Question MCQ
We have provided below the practice questions related to different concepts of integration to improve your understanding:
Frequently Asked Questions (FAQs)
The integral is $\int \frac{1}{x}dx = \ln|x| + C$.
The integrals of these trigonometric functions are $\int \sin(ax) , dx = -\frac{1}{a}\cos(ax) + C$ and $\int \cos(ax) , dx = \frac{1}{a}\sin(ax) + C$.
Substitution changes the variable in an integral to make it simpler. By choosing an appropriate new variable, complicated integrals can be transformed into standard forms that are easier to solve.
Integration by parts is a technique for integrating the product of two functions. It is particularly useful when direct formulas do not apply, and is based on reversing the product rule from differentiation.
The constant of integration C is always added to indefinite integrals because differentiation of any constant is zero. This ensures that all possible antiderivatives are represented.