Trigonometric Integrals

Trigonometric Integrals

Komal MiglaniUpdated on 02 Jul 2025, 08:02 PM IST

Trigonometric integral is one of the important parts of Calculus, which applies to measuring the change in the function at a certain point. Mathematically, it forms a powerful tool by which slopes of functions are determined, the maximum and minimum of functions found, and problems on motion, growth, and decay, to name a few. These integration concepts have been broadly applied in branches of mathematics, physics, engineering, economics, and biology.

Trigonometric Integrals
Trigonometric Integrals

In this article, we will cover the concept of Trigonometric integral. This concept falls under the broader category of Calculus, a crucial Chapter in class 12 Mathematics. It is not only essential for board exams but also for competitive exams like the Joint Entrance Examination (JEE Main), and other entrance exams such as SRMJEE, BITSAT, WBJEE, BCECE, and more. Over the last ten years of the JEE Main exam (from 2013 to 2023), three questions have been asked on this concept, including one in 2013, one in 2021, and one in 2023.

Trigonometric Integrals

Integration is the reverse process of differentiation. In integration, we find the function whose differential coefficient is given. The rate of change of a quantity y concerning another quantity x is called the derivative or differential coefficient of y concerning x. Geometrically, the Differentiation of a function at a point represents the slope of the tangent to the graph of the function at that point. These functions are also known as arcus functions, cyclometric functions, or anti-trigonometric functions. These functions are used to get an angle for a given trigonometric value. It refers to the change in the value of the trigonometric function at a certain rate.

(a) Integral of the form

1. $\int \frac{1}{a \cos ^2 x+b \sin ^2 x} d x$
2. $\int \frac{1}{a+b \sin ^2 x} d x$
3. $\int \frac{1}{a+b \cos ^2 x} d x$
4. $\int \frac{1}{a+b \sin ^2 x+c \cos ^2 x} d x$

Working Rule:

Step 1: Divide the numerator and denominator both by $\cos ^2 x$.
Step 2 : Put $\tan x=t, \sec ^2 x \mathrm{dx}=\mathrm{dt}$

This substitution will convert the trigonometric integral into an algebraic integral.

After employing these steps the integral will reduce to the form $\int \frac{f(t) d t}{A t^2+B t+C}$, where $f(t)$ is a polynomial in $t$.
This integral can be evaluated by methods we studied in previous concepts.

(b) Integral of the form

1. $\int \frac{1}{a \sin x+b \cos x} d x$
2. $\int \frac{1}{a+b \sin x} d x$
3. $\int \frac{1}{a+b \cos x} d x$
4. $\int \frac{1}{a \sin x+b \cos x+c} d x$

Working Rule:

Write sin x and cos x in terms of tan (x/2) and then substitute for tan (x/2) = t

i.e.

$\sin x=\frac{2 \tan x / 2}{1+\tan ^2 x / 2}$ and $\cos x=\frac{1-\tan ^2 x / 2}{1+\tan ^2 x / 2}$
replace, $\tan (\mathrm{x} / 2)$ with $t$
by performing these steps the integral reduces to the form
$\int \frac{1}{a t^2+b t+c} \mathrm{dt}$ which can be solved by method we studied in previous concepts.

(c) Integrals of the form

1. $\int \frac{p \cos x+q \sin x+r}{a \cos x+b \sin x+c} d x$
2. $\int \frac{p \cos x+q \sin x}{a \cos x+b \sin x} d x$

Working Rule:

Express numerator as $\lambda($ denominator $)+\mu($ differentiation of denominator $)+\gamma$

$\Rightarrow(\mathrm{p} \cos \mathrm{x}+\mathrm{q} \sin \mathrm{x}+\mathrm{r})=\lambda(\mathrm{a} \cos \mathrm{x}+\mathrm{b} \sin \mathrm{x}+\mathrm{c})+\mu(-\mathrm{a} \sin \mathrm{x}+\mathrm{b} \cos x)+\gamma$

where $\lambda, \mu$, and \gamma are constants to be determined by comparing the coefficients of $\sin x, \cos \mathrm{x}$, and constant terms on both sides.

$\begin{aligned}
\int \frac{p \cos \mathrm{x}+\mathrm{q} \sin \mathrm{x}+\mathrm{r}}{a \cos \mathrm{x}+\mathrm{b} \sin \mathrm{x}+\mathrm{c}} \mathrm{dx}= & \int \frac{\lambda(\mathrm{a} \cos \mathrm{x}+\mathrm{b} \sin \mathrm{x}+\mathrm{c})+\mu(-\mathrm{a} \sin \mathrm{x}+\mathrm{b} \cos \mathrm{x})+\gamma}{\mathrm{a} \cos \mathrm{x}+\mathrm{b} \sin \mathrm{x}+\mathrm{c}} \mathrm{dx} \\
= & \lambda \int \frac{a \cos x+b \sin x+c}{a \cos x+b \sin x+c} d x+\mu \int \frac{-a \sin x+b \cos x}{a \cos x+b \sin x+c} d x \\
& \quad+\int \frac{\mu}{\mathrm{a} \cos \mathrm{x}+\mathrm{b} \sin \mathrm{x}+\mathrm{c}} \mathrm{dx} \\
= & \lambda x+\mu \ln |a \cos x+b \sin x+c|+\int \frac{\mu}{a \cos x+b \sin x+c} d x
\end{aligned}$

Recommended Video Based on Trigonometric Integrals


Solved Questions Based on Trigonometric Integrals

Example 1: Integrate $\int \frac{d x}{\sin ^2 x+2 \sin x \cos x}$

1) $\ln \frac{t+1}{t-1}+c$
2) $\ln \frac{t+2}{t}+c$
3) $\frac{1}{2} \ln \frac{t}{(t+2)}+C$
4) none of these

Solution
Divide by $\cos ^2 x$ in each case and pull $t=\tan x, d t=\sec ^2 x d x$

$\int \frac{d x \sec ^2 x}{\tan ^2 x+2 \tan x}=\int \frac{d t}{(t+1)^2-1}=\frac{1}{2} \ln \frac{t}{(t+2)}+C$


Hence, the answer is the option 3.
Example 2: $\int \frac{d x}{1+\sin x}$
1) $\frac{1}{1+\tan \left(\frac{x}{2}\right)}+C$

2) $-\frac{2}{\tan \left(\frac{x}{2}\right)+1}+C$
3) $\frac{1}{1+\cot \left(\frac{x}{2}\right)}+C$
4) $-\frac{1}{1+\cot \left(\frac{x}{2}\right)}+C$

$\begin{aligned}
& I=\int \frac{1}{\sin (x)+1} \mathrm{~d} x \\
& =\int \frac{\sec ^2\left(\frac{x}{2}\right)}{\left(\tan \left(\frac{x}{2}\right)+1\right)^2} \mathrm{~d} x \\
& \text { Put } u=\tan \left(\frac{x}{2}\right)+1 \Rightarrow \mathrm{d} x=\frac{2}{\sec ^2\left(\frac{x}{2}\right)} \mathrm{d} u \\
& I=2 \int \frac{1}{u^2} d u \\
& =-\frac{2}{u} \\
& =-\frac{2}{\tan \left(\frac{x}{2}\right)+1}+C
\end{aligned}$

Hence, the answer is the option (2).

Example 3: $\int \frac{d x}{3+4 \cos ^2 x}$ equals
1) $\frac{\sqrt{3}}{\sqrt{7}} \tan ^{-1}\left(\sqrt{\frac{3}{7}} \tan x\right)+C$
2) $\frac{1}{\sqrt{21}} \tan ^{-1}\left(\sqrt{\frac{3}{7}} \tan x\right)+C$

$\sqrt{3} \tan ^{-1}\left(\sqrt{\frac{3}{7}} \tan x\right)+C$

4) None of these

Solution
Divide numerator and denominator by $\cos ^2 x$

$\begin{aligned}
& \int \frac{\sec ^2 x d x}{3 \sec ^2 x+4} \\
& =\int \frac{\sec ^2 x d x}{3 \tan ^2 x+3+4} \\
& =\int \frac{\sec ^2 x d x}{7+3 \tan ^2 x}
\end{aligned}$

Put $\tan x=t \Rightarrow \sec ^2 x d x=d t$

$\begin{aligned}
& \int \frac{d t}{7+3 t^2} \\
& =\frac{1}{3} \int \frac{d t}{t^2+\left(\sqrt{\frac{7}{3}}\right)^2} \\
& =\frac{1}{3} \times \frac{\sqrt{3}}{\sqrt{7}} \tan ^{-1}\left(\sqrt{\frac{3}{7}} \tan x\right)+C \\
& =\frac{1}{\sqrt{21}} \tan ^{-1}\left(\sqrt{\frac{3}{7}} \tan x\right)+C
\end{aligned}$

Hence, the answer is the option 2.

Example 4: Integrate $\int \frac{d x}{\sin ^2 x+2 \cos ^2 x+2 \sin x \cos x}$
1) $x+c$
2) $\frac{1}{2} \tan ^{-1}(1+x)+C$
3) $\tan ^{-1}(1+\tan x)+C$

4) None of these

Solution

Divide by $\cos^{2} x$

$\begin{aligned}
& \int \frac{\sec ^2 x \cdot d x}{\tan ^2 x+2+2 \tan x} \\
& I=\int \frac{\sec ^2 x d x}{(\tan x+1)^2+1}
\end{aligned}$

Put $\tan (x)=t$

$\sec ^2 x d x=d t$

$\begin{aligned}
& I=\int \frac{d t}{(t+1)^2+1} \\
& =\tan ^{-1}(t+1)+C \\
& =\tan ^{-1}(\tan x+1)+C
\end{aligned}$

Hence, the answer is the option 3.

Example 5: $\int \frac{d x}{1+2 \cos x}$
1) $\frac{1}{\sqrt{3}} \ln \left|\frac{\sqrt{3}+\tan \frac{x}{2}}{\sqrt{3}-\tan \frac{x}{2}}\right|+c$
2) $-\frac{1}{\sqrt{3}} \cdot \ln \left|\frac{\tan \left(\frac{x}{2}\right)-\sqrt{3}}{\tan \left(\frac{x}{2}\right)+\sqrt{3}}\right|+c$
3) $\frac{2}{\sqrt{3}} \ln \left|\frac{\sqrt{3}+\tan \frac{x}{2}}{\sqrt{3}-\tan \frac{x}{2}}\right|+c$
4) None of these

Solution

$\begin{aligned} & \int \frac{d x}{1+2 \cos x} \\ & \int \frac{d x}{1+\frac{2-2 \tan ^2 \frac{x}{2}}{1+\tan ^2 \frac{2}{2}}} \\ & =\int \frac{\sec ^2\left(\frac{x}{2}\right) \cdot d x}{3-\tan ^2\left(\frac{x}{2}\right)} \\ & \text { Put } u=\tan \left(\frac{x}{2}\right) \Rightarrow \frac{1}{2} \sec ^2\left(\frac{x}{2}\right) \cdot d x=d u \\ & =-2 \int \frac{1}{u^2-3} d u \\ & =-\frac{1}{\sqrt{3}} \cdot \ln \left|\frac{u-\sqrt{3}}{u+\sqrt{3}}\right|+c \\ & =-\frac{1}{\sqrt{3}} \cdot \ln \left|\frac{\tan \left(\frac{x}{2}\right)-\sqrt{3}}{\tan \left(\frac{x}{2}\right)+\sqrt{3}}\right|+c\end{aligned}$Hence, the answer is the option (2).

Summary

Trigonometric integral is an important concept used in practical and traditional approaches in mathematics. Trigonometric integrals are integrals that involve trigonometric functions such as sine, cosine, tangent, and their inverses.

Commonly Asked Questions

Q: How do you integrate sin²x?
A:
To integrate sin²x, we use the half-angle formula: sin²x = (1 - cos2x)/2. The integral becomes:
Q: How do you handle integrals involving secant and tangent functions?
A:
Integrals involving secant and tangent often use the identity sec²x = 1 + tan²x. A common technique is to make a substitution u = tanx, which transforms du = sec²x dx. This substitution can simplify many secant and tangent integrals.
Q: What is the significance of the integral ∫sec x dx?
A:
The integral ∫sec x dx is significant because its antiderivative, ln|sec x + tan x| + C, is not immediately obvious. This integral serves as a building block for more complex trigonometric integrals and appears frequently in physics and engineering applications. Understanding how to derive and use this result is crucial for advanced integration techniques.
Q: How do you integrate tan²x?
A:
To integrate tan²x, we use the identity tan²x = sec²x - 1. The integral becomes:
Q: How do you approach integrals of the form ∫sin(ax) cos(bx) dx?
A:
For integrals of the form ∫sin(ax) cos(bx) dx, we use the product-to-sum formula: sin(ax) cos(bx) = (1/2)[sin(a+b)x + sin(a-b)x]. This transforms the integral into a sum of simpler trigonometric functions that are easier to integrate.

Frequently Asked Questions (FAQs)

Q: How do you integrate ∫cos(x²) dx?
A:
The integral ∫cos(x²) dx doesn't have an elementary antiderivative. It's relate
Q: How do you approach integrals of the form ∫sin(ax) sin(bx) dx?
A:
For integrals of the form ∫sin(ax) sin(bx) dx, we use the product-to-sum formula:
Q: What is the method for integrating ∫sec x tan²x dx?
A:
For ∫sec x tan²x dx, we use the identity tan²x = sec²x - 1:
Q: How do you integrate ∫tan³x dx?
A:
To integrate ∫tan³x dx, we use the identity tan²x = sec²x - 1:
Q: What is the significance of the integral ∫dx/√(1-x²)?
A:
The integral ∫dx/√(1-x²) is significant because it results in arcsin(x) + C. This is a fundamental form that appears in many applications and is related to the inverse sine function. It's also the basis for trigonometric substitution in more complex integrals. Understanding this integral is crucial for solving problems involving circular motion and periodic phenomena.
Q: How do you integrate ∫sec x tan x dx?
A:
To integrate ∫sec x tan x dx, we recognize it as the derivative of sec x:
Q: How do you handle integrals involving products of sine and exponential functions?
A:
For integrals involving products of sine and exponential functions, like ∫e^x sin x dx, we use integration by parts twice:
Q: What is the technique for integrating ∫csc²x dx?
A:
To integrate ∫csc²x dx, we recognize it as the negative derivative of cot x:
Q: How do you approach integrals of the form ∫sin(ax²) dx?
A:
Integrals of the form ∫sin(ax²) dx don't have elementary antiderivatives. They are related to Fresnel integrals, which are important in optics and signal processing. While we can't find a closed-form solution, we can approximate these integrals numerically or express them in terms of special functions. This highlights the limitations of elementary integration techniques and the need for advanced methods in some cases.
Q: What is the strategy for integrating ∫cos⁴x dx?
A:
For ∫cos⁴x dx, we use the power reduction formula: cos²x = (1 + cos(2x))/2