Product of Two Binomial Coefficients

Product of Two Binomial Coefficients

Komal MiglaniUpdated on 02 Jul 2025, 08:02 PM IST

An expression with two terms is called the binomial expansion. In the case of higher degree expression, it is difficult to calculate it manually. In these cases, Binomial theorem can be used to calculate it. Binomial theorem is used for the expansion of a binomial expression with a higher degree. Binomial coefficients are the coefficients of the terms in the Binomial expansion. Binomial theorem is proved using the concept of mathematical induction. Apart from Mathematics, Binomial theorem is also used in statistical and financial data analysis.

This Story also Contains

  1. Binomial Theorem
  2. Binomial Coefficient
  3. Product of Two Binomial Coefficients
  4. Solved Examples Based on Product of Two Binomial Coefficients
Product of Two Binomial Coefficients
Product of Two Binomial Coefficients

This article is about the product of two Binomial coefficients which falls under the broader category of Binomial Theorem and its applications. It is one of the important topics for competitive exams.

Binomial Theorem

Statement:

If $n$ is any positive integer, then

$ (a + b)^n = \binom{n}{0} a^n + \binom{n}{1} a^{n - 1} b + \binom{n}{2} a^{n - 2} b^2 + \dots + \binom{n}{n - 1} a b^{n - 1} + \binom{n}{n} b^n $

Proof:

The proof is obtained by applying the principle of mathematical induction.

Let the given statement be:

$ P(n): (a + b)^n = \binom{n}{0} a^n + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^2 + \dots + \binom{n}{n-1} a b^{n-1} + \binom{n}{n} b^n $

For $ n = 1 $, we have:

$ P(1): (a + b)^1 = \binom{1}{0} a^1 + \binom{1}{1} b^1 = a + b $

Thus, $ P(1) $ is true.

Suppose $ P(k) $ is true for some positive integer $ k $, i.e.,

$ (a + b)^k = \binom{k}{0} a^k + \binom{k}{1} a^{k-1} b + \binom{k}{2} a^{k-2} b^2 + \dots + \binom{k}{k} b^k$

We shall prove that $ P(k + 1) $ is also true, i.e.,

$ (a + b)^{k + 1} = \binom{k+1}{0} a^{k+1} + \binom{k+1}{1} a^k b + \binom{k+1}{2} a^{k-1} b^2 + \dots + \binom{k+1}{k+1} b^{k+1} $

Now,

$ (a + b)^{k + 1} = (a + b)(a + b)^k $

$ = (a + b) \left[\binom{k}{0} a^k + \binom{k}{1} a^{k-1} b + \binom{k}{2} a^{k-2} b^2 + \dots + \binom{k}{k-1} a b^{k-1} + \binom{k}{k} b^k\right] $

[from (1)]

$ = \binom{k}{0} a^{k+1} + \binom{k}{1} a^k b + \binom{k}{2} a^{k-1} b^2 + \dots + \binom{k}{k-1} a^2 b^{k-1} + \binom{k}{k} a b^k $

$ + \binom{k}{0} a^k b + \binom{k}{1} a^{k-1} b^2 + \binom{k}{2} a^{k-2} b^3 + \dots + \binom{k}{k-1} a b^k + \binom{k}{k} b^{k+1} $

[by actual multiplication]

$ = \binom{k}{0} a^{k+1} + (\binom{k}{1} + \binom{k}{0}) a^k b + (\binom{k}{2} + \binom{k}{1}) a^{k-1} b^2 + \dots + (\binom{k}{k} + \binom{k}{k-1}) a b^k + \binom{k}{k} b^{k+1} $

[grouping like terms]

$ = \binom{k+1}{0} a^{k+1} + \binom{k+1}{1} a^k b + \binom{k+1}{2} a^{k-1} b^2 + \dots + \binom{k+1}{k} a b^k + \binom{k+1}{k+1} b^{k+1}$

(by using $ \binom{k+1}{0} = 1 $, $ \binom{k}{r} + \binom{k}{r-1} = \binom{k+1}{r} $, and $ \binom{k}{k} = 1 = \binom{k+1}{k+1} $)

Thus, it has been proved that $ P(k + 1) $ is true whenever $ P(k) $ is true. Therefore, by the principle of mathematical induction, $ P(n) $ is true for every positive integer $ n $.

Binomial Coefficient

The combination $\binom{n}{r}$ or ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$ occuring in the Binomial theorem is called a Binomial coefficient, where $\binom{n}{r}=C(n, r)={ }^n C_r=\frac{n!}{r!(n-r)!}$.

Product of Two Binomial Coefficients

Consider the identities

$ (1+x)^n=C_0+C_1 x+C_2 x^2+C_3 x^3+\ldots+C_n x^n $

$(1+x)^n=C_0+C_1 x+C_2 x^2+C_3 x^3 \ldots+C_n \cdot x^n $

Multiply these identities we get another identities

$ (1+x)^n(1+x)^n=\left(C_0+C_1 x+C_2 x^2+\ldots \ldots+C_n x^n\right) \times\left(C_0+C_1 x+C_2 x^2+\ldots \ldots+C_n x^n\right) $

$(1+x)^{2 n}=\left(C_0+C_1 x+C_2 x^2+\ldots \ldots+C_n x^n\right) \times\left(C_0+C_1 x+C_2 x^2+\ldots \ldots+C_n x^n\right) $

Compare coefficients of $x^n$ on both sides.

In LHS, coeff. of $x^n=$ coeff. of $x^n$ in $(1+x)^{2 n}={ }^{2 n} C_n$

In RHS. terms containing $x^n$ are

$ C_0 C_n x^n+C_1 C_{n-1} x^n+C_2 C_{n-2} x^n+\ldots \ldots \ldots+C_n C_0 x^n $

$\Rightarrow \quad$ Coeff. of $x^n$ on RHS $=C_0 C_n+C_1 C_{n-1}+C_2 C_{n-2}+\ldots \ldots \ldots+C_n C_0$

Equating the coefficients,

$ C_0 C_n+C_1 C_{n-1}+C_2 C_{n-2}+\ldots \ldots \ldots+C_n C_0=C_0^2+C_1^2+C_2^2+\ldots \ldots \ldots C_n^2={ }^{2 n} C_n $

Shortcut formula

To get the value of $C_0 C_{n-r}+C_1 C_{n-r+1}+C_2 C_{n-r+2}+\ldots \ldots \ldots+C_{n-r} C_0$

Observe that upper indices are constant in each term, and sum of lower indices = constant $=(n-r)$

So this expression equals ${ }^{\text {Sum of upper indices }} C_{\text {sum of lower indices }}$

So the given expression equals ${ }^{n+n} C_{n-r}={ }^{2 n} C_{n-r}$

Recommended Video Based on Product of Two Binomial Coefficients:


Solved Examples Based on Product of Two Binomial Coefficients

Example 1: The value of $r$ for which

${ }^{20} C_r^{20} C_0+{ }^{20} C_{r-1}{ }^{20} C_1+{ }^{20} C_{r-2}{ }^{20} C_2+\ldots \ldots \ldots+{ }^{20} C_0{ }^{20} C_r$ is maximum, is:

1) $15 $

2) $11 $

3) $20$

4) $10 $

Solution:

${ }^{20} C_r^{20} C_0+{ }^{20} C_{r-1}{ }^{20} C_1+{ }^{20} C_{r-2}{ }^{20} C_2+\ldots \ldots \ldots+{ }^{20} C_0{ }^{20} C_r$

Using the shortcut formula

$ ={ }^{20+20} C_r $


$={ }^{40} C_r $


This is maximum when $\mathrm{r}=20$

Example 2: The sum of the series

$\binom{10}{0}\binom{10}{4}+\binom{10}{1}\binom{10}{5}+\binom{10}{2}\binom{10}{6}+\ldots+\binom{10}{6}\binom{10}{10}$ is

1) $\binom{20}{6}$

2) $\binom{20}{7}$

3) $\binom{20}{8}$

4) $\binom{20}{9}$

Solution:

$ \binom{10}{0}\binom{10}{4}+\binom{10}{1}\binom{10}{5}+\binom{10}{2}\binom{10}{6}+\ldots+\binom{10}{6}\binom{10}{10} $


$=\binom{10}{0}\binom{10}{6}+\binom{10}{1}\binom{10}{5}+\binom{10}{2}\binom{10}{4}+\ldots+\binom{10}{6}\binom{10}{0} $

$\left(U \operatorname{sing}{ }^n C_r={ }^n C_{n-r}\right) $


Now upper indices are constant and sum of lower indices is constant

$ =\binom{10+10}{6} $

$=\binom{20}{6} $


Example 3: $\sum_{\text {If }}^{31}\left({ }^{31} \mathrm{C}_{\mathrm{k}}\right)\left({ }^{31} \mathrm{C}_{\mathrm{k}-1}\right)-\sum_{\mathrm{k}=1}^{30}\left({ }^{30} \mathrm{C}_{\mathrm{k}}\right)\left({ }^{30} \mathrm{C}_{\mathrm{k}-1}\right)=\frac{\alpha(60!)}{(30!)(31!)}$, where $\alpha \in \mathrm{R}$, then the value of $16 \alpha$ is equal to

1) $1411 $

2) $1320 $

3) $1615 $

4) $1855 $

Solution:

$ \sum_{\mathrm{k}=1}^{31}{ }^{31} \mathrm{C}_{\mathrm{k}}{ }^{31} \mathrm{C}_{\mathrm{k}-1}-\sum_{\mathrm{k}=1}^{30}{ }^{30} \mathrm{C}_{\mathrm{k}}{ }^{30} \mathrm{C}_{\mathrm{k}-1} $

$=\left({ }^{31} \mathrm{C}_1{ }^{31} \mathrm{C}_0+{ }^{31} \mathrm{C}_2{ }^{31} \mathrm{C}_1+\cdots{ }^{31} \mathrm{C}_{31}{ }^{31} \mathrm{C}_{30}\right)-\left({ }^{30} \mathrm{C}_1{ }^{30} \mathrm{C}_0+{ }^{30} \mathrm{C}_2{ }^{30} \mathrm{C}_1+\cdots{ }^{30} \mathrm{C}_{30}{ }^{30} \mathrm{C}_{20}\right) $

$=\left({ }^{31} \mathrm{C}_1{ }^{31} \mathrm{C}_{31}+{ }^{31} \mathrm{C}_2{ }^{31} \mathrm{C}_{30}+\cdots{ }^{31} \mathrm{C}_{31}{ }^{31} \mathrm{C}_1\right)-\left({ }^{30} \mathrm{C}_1{ }^{30} \mathrm{C}_{30}+{ }^{30} \mathrm{C}_2{ }^{30} \mathrm{C}_{29}+\cdots{ }^{30} \mathrm{C}_{30}{ }^{30} \mathrm{C}_1\right) $

$={ }^{62} \mathrm{C}_{32}-{ }^{60} \mathrm{C}_{31} $

$\left.=\frac{62!}{32!30!}-\frac{60!}{31!29!}=\frac{60![62 \times 61-32 \times 30]}{32!30!}\right) $

$=\frac{60!}{30!31!}\left(\frac{62 \times 61-32 \times 30}{32}\right) $


$ \Rightarrow \alpha=\frac{31 \times 61-16 \times 30}{16} $

$\Rightarrow 16 \alpha=1891-480=1411 $


Hence, the answer is option (1).


Frequently Asked Questions (FAQs)

Q: What's the relationship between (nCr) × (nCs) and (nCr) × (n-rCs)?
A:
(nCr) × (n-rCs) ≤ (nCr) × (nCs) for all valid r, s. The equality holds when s ≤ n-r. This relationship highlights the difference between choosing from the whole set versus choosing from what's left after the first selection.
Q: How can we use the product of binomial coefficients to understand the concept of complementary counting?
A:
Complementary counting often involves subtracting one count from another. The difference between (nCr+s) and (nCr) × (nCs) represents the number of ways to choose r+s items that can't be separated into groups of r and s.
Q: What's the significance of (nCr) × (nCs) in the context of probability distributions?
A:
In probability theory, (nCr) × (nCs) appears in various distributions, including the multivariate hypergeometric distribution, which models drawing multiple types of items without replacement.
Q: How does the product of binomial coefficients relate to the concept of multisets in combinatorics?
A:
While (nCr) × (nCs) deals with sets, it relates to multisets through the identity ((n+r-1)Cr) × ((n+s-1)Cs), which represents choosing r and s items from n types with repetition allowed.
Q: What's the connection between (nCr) × (nCs) and the concept of conditional combinations?
A:
(nCr) × (nCs) / (nCr+s) represents the number of ways to choose r items of one type and s of another, given that r+s items were chosen in total. This is a form of conditional combination.
Q: How can we use the product of binomial coefficients to understand the concept of sampling without replacement?
A:
(nCr) × (n-rCs) represents sampling without replacement: choosing r items from n, then s items from the remaining n-r. This models many real-world sampling scenarios.
Q: What's the significance of (nCr) × (nCs) in the context of coding theory?
A:
In coding theory, (nCr) × (nCs) could represent the number of ways to introduce r errors of one type and s errors of another type in a code of length n, useful in analyzing error patterns and correction capabilities.
Q: How does the product of binomial coefficients relate to the concept of permutations with repetition?
A:
While (nCr) × (nCs) deals with combinations, it relates to permutations with repetition through the identity (n+r-1Cr) × (n+s-1Cs) = number of ways to arrange r+s items of n types with repetition allowed.
Q: What's the relationship between (nCr) × (nCs) and (n+1Cr) × (nCs)?
A:
(n+1Cr) × (nCs) = (nCr) × (nCs) × (n+1) / (n-r+1). This relationship shows how adding one element to the set affects the product when we increase the selection size for one coefficient but not the other.
Q: How does the product of binomial coefficients relate to the concept of expected value in probability?
A:
In certain probability distributions, like the hypergeometric distribution, the product of binomial coefficients appears in the calculation of expected values, linking combinatorics to statistical concepts.