Integration of Binomial Expansion

Integration of Binomial Expansion

Komal MiglaniUpdated on 02 Jul 2025, 08:01 PM IST

An expression with two terms is called the binomial expansion. In the case of higher degree expression, it is difficult to calculate it manually. In these cases, Binomial theorem can be used to calculate it. Binomial theorem is used for the expansion of a binomial expression with a higher degree. Binomial theorem is proved using the concept of mathematical induction. Binomial coefficients are the coefficients of the terms in the Binomial expansion. Apart from Mathematics, Binomial theorem is also used in statistical and financial data analysis.

Integration of Binomial Expansion
Integration of Binomial Expansion

This article is about the integration in Binomial coefficients which falls under the broader category of Binomial Theorem and its applications. It is one of the important topics for competitive exams.

Binomial Theorem

Statement:

If $n$ is any positive integer, then

$ (a + b)^n = \binom{n}{0} a^n + \binom{n}{1} a^{n - 1} b + \binom{n}{2} a^{n - 2} b^2 + \dots + \binom{n}{n - 1} a b^{n - 1} + \binom{n}{n} b^n $

Proof:

The proof is obtained by applying the principle of mathematical induction.

Let the given statement be:

$ P(n): (a + b)^n = \binom{n}{0} a^n + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^2 + \dots + \binom{n}{n-1} a b^{n-1} + \binom{n}{n} b^n $

For $ n = 1 $, we have:

$ P(1): (a + b)^1 = \binom{1}{0} a^1 + \binom{1}{1} b^1 = a + b $

Thus, $ P(1) $ is true.

Suppose $ P(k) $ is true for some positive integer $ k $, i.e.,

$ (a + b)^k = \binom{k}{0} a^k + \binom{k}{1} a^{k-1} b + \binom{k}{2} a^{k-2} b^2 + \dots + \binom{k}{k} b^k$

We shall prove that $ P(k + 1) $ is also true, i.e.,

$ (a + b)^{k + 1} = \binom{k+1}{0} a^{k+1} + \binom{k+1}{1} a^k b + \binom{k+1}{2} a^{k-1} b^2 + \dots + \binom{k+1}{k+1} b^{k+1} $

Now,

$ (a + b)^{k + 1} = (a + b)(a + b)^k $

$ = (a + b) \left[\binom{k}{0} a^k + \binom{k}{1} a^{k-1} b + \binom{k}{2} a^{k-2} b^2 + \dots + \binom{k}{k-1} a b^{k-1} + \binom{k}{k} b^k\right] $

[from (1)]

$ = \binom{k}{0} a^{k+1} + \binom{k}{1} a^k b + \binom{k}{2} a^{k-1} b^2 + \dots + \binom{k}{k-1} a^2 b^{k-1} + \binom{k}{k} a b^k $

$ + \binom{k}{0} a^k b + \binom{k}{1} a^{k-1} b^2 + \binom{k}{2} a^{k-2} b^3 + \dots + \binom{k}{k-1} a b^k + \binom{k}{k} b^{k+1} $

[by actual multiplication]

$ = \binom{k}{0} a^{k+1} + (\binom{k}{1} + \binom{k}{0}) a^k b + (\binom{k}{2} + \binom{k}{1}) a^{k-1} b^2 + \dots + (\binom{k}{k} + \binom{k}{k-1}) a b^k + \binom{k}{k} b^{k+1} $

[grouping like terms]

$ = \binom{k+1}{0} a^{k+1} + \binom{k+1}{1} a^k b + \binom{k+1}{2} a^{k-1} b^2 + \dots + \binom{k+1}{k} a b^k + \binom{k+1}{k+1} b^{k+1}$

(by using $ \binom{k+1}{0} = 1 $, $ \binom{k}{r} + \binom{k}{r-1} = \binom{k+1}{r} $, and $ \binom{k}{k} = 1 = \binom{k+1}{k+1} $)

Thus, it has been proved that $ P(k + 1) $ is true whenever $ P(k) $ is true. Therefore, by the principle of mathematical induction, $ P(n) $ is true for every positive integer $ n $.

Integration of Binomial Expansion

Limits for Integration:

If the numbers occur as the denominator of the binomial coefficient, then this method is applicable.

S. No.

Conditions

Limits of integration

1

If the binomial series contains all positive sign terms

$0$ to $1$

2

If the binomial series contains alternate sign $(+ and -)$

$-1$ to $0$

3

If the binomial series contains odd coefficients $(C0, C2, C4,.....)$

$-1$ to $1$

4

If the binomial series contains even coefficients $(C1, C3, C5,.....)$

subtract (2) from (1) then divide by 2


For Example,

$ C_0+2^2 \cdot \frac{C_1}{2}+2^3 \cdot \frac{C_2}{3}+\ldots+2^{n+1} \cdot \frac{C_n}{n+1}=\frac{3^{n+1}-1}{n+1}$

Proof:

$ (1+x)^n=C_0+C_1 x+C_2 x^2+\ldots+C_n x^n$

As each term has $+\operatorname{sign}$ and each term also has powers of 2 , so we will integrate it from $0$ to $2$

$\int_0^2(1+x)^n d x=\int_0^2\left[C_0+C_1 x+\ldots+C_n x^n\right] d x $

${\left[\frac{(1+x)^{n+1}}{n+1}\right]_0^2=\left[C_0 x+C_1 \cdot \frac{x^2}{2}+C_2 \cdot \frac{x^3}{3}+\ldots C_n \cdot \frac{x^{n+1}}{n+1}\right]_0^2} $

$\Rightarrow \quad \frac{3^{n+1}-1}{n+1}=C_0 \cdot 2+2^2 \cdot \frac{C_1}{2}+2^3 \cdot \frac{C_2}{3}+\ldots+2^{n+1} \cdot \frac{C_n}{n+1} $

Recommended Video Based on Íntegration of Binomial Expansion:

Solved Examples Based on Integration in Binomial Expansion

Example 1: If $\mathrm{C}_0, \mathrm{C}_1, \mathrm{C}_2, \ldots, \mathrm{C}_n$ be binomial coefficients in the expansion of $(1+x)^n$

Find the value of $C_0-\frac{C_1}{2}+\frac{C_2}{3}-\ldots+(-1)^n \frac{C_n}{n+1}$.

1) $\frac{n}{n-1}$

2) $\frac{n}{n+1}$

3) $\frac{1}{n-1}$

4) $\frac{1}{n+1}$

Solution:

$ (1+x)^n=C_0+C_1 x+C_2 x^2+\ldots+C_n x^n $

Integrating within limits $-1$ to $0$ , then we get,

$\int_{-1}^0(1+x)^n d x=\int_{-1}^0\left(C_0+C_1 x+C_2 x^2+\ldots+C_n x^n\right) d x $

$\Rightarrow\left[\frac{(1+x)^{n+1}}{n+1}\right]_{-1}^0=\left[C_0 x+\frac{C_1 x^2}{2}+\frac{C_2 x^3}{3}+\ldots+\frac{C_n x^{n+1}}{n+1}\right]_{-1}^0 $

$\Rightarrow \frac{1-0}{n+1}=0-\left(-C_0+\frac{C_1}{2}-\frac{C_2}{3}+\ldots+(-1)^{n+1} \frac{C_n}{n+1}\right) $

$\Rightarrow \frac{1}{n+1}=C_0-\frac{C_1}{2}+\frac{C_2}{3}-\ldots+(-1)^{n+2} \frac{C_n}{n+1} $

$\Rightarrow \frac{1}{n+1}=C_0-\frac{C_1}{2}+\frac{C_2}{3}-\ldots+(-1)^n \frac{C_n}{n+1} $

$\because\left[(-1)^{n+2}=(-1)^n(-1)^2=(-1)^n\right] $

Hence, $C_0-\frac{C_1}{2}+\frac{C_2}{3}-\ldots+(-1)^n \frac{C_n}{n+1}=\frac{1}{n+1}$

Hence, the answer is option (4).

Example 2: The value of $C_0+\frac{C_1}{2}+\frac{C_2}{3}+\ldots+\frac{C_n}{n+1}$ is.

1) $\frac{2^n-1}{n+1}$

2) $\frac{2^{n+1}}{n+1}$

3) $\frac{2^{n+1}-1}{n+1}$

4) None of these

Solution:

This binomial series contains all positive sign terms

$(1+x)^n=C_0+C_1 x+C_2 x^2+\ldots \ldots+C_n x^n$

Integrating between limits $0$ and $1$ , we get :

$ \int_0^1(1+x)^n d x=\int_0^1\left(C_0 d x+\int_0^1 C_1 x d x+\int_0^1 C_2 x^2 d x+\ldots+\int_0^1 C_n x^n\right) d x $

$ {\left[\frac{(1+x)^{n+1}}{n+1}\right]_0^1=\left.\frac{C_0 x}{1}\right|_0 ^1+\left.C_1 \frac{x^2}{2}\right|_0 ^1+\left.C_2 \cdot \frac{x^3}{3}\right|_0 ^1+\ldots+\left.C_n \cdot \frac{x^{n+1}}{n+1}\right|_0 ^1}$

$\Rightarrow \quad \frac{2^{n+1}}{n+1}-\frac{1}{n+1}=C_0+\frac{C_1}{2}+\frac{C_2}{3}+\ldots+\frac{C_n}{n+1}$

$ \Rightarrow \quad C_0+\frac{C_1}{2}+\frac{C_2}{3}+\ldots+\frac{C_n}{n+1}=\frac{2^{n+1}-1}{n+1}$

Hence, the answer is option (3).

Example 3: The sum to $(\mathrm{n}+1)$ terms of the series $\frac{C_0}{2}+\frac{C_1}{3}+\frac{C_2}{4}+\frac{C_3}{5}+\ldots$ is:

1) $\frac{1}{n+1}$

2) $\frac{1}{n+2}$

3) $\frac{1}{n(n+1)}$

4) none of these

Solution:

As we have learned

Result of Binomial Theorem -

$ c_0+\frac{c_1}{2}+\frac{c_2}{3}+-----\frac{c_n}{n+1}=\frac{2^{n+1}-1}{n+1} $

Take $\int_0^1(1+x)^n d x=\int_o^1 \sum_{r=0}^n{ }^n c_r x^r d x$

We have

$(1-x)^n=c_0-c_1 x+c_2 x^2-c_3 x^3+\ldots $

$ x(1-x)^n=c_0 x-c_1 x^2+c_2 x^3-c_3 x^4+\ldots$

$ \int_0^1 x(1-x)^n d x=\int_0^1 x(1-x)^n d x=\int_0^1(1-t) t^n(-1) d t \quad[\text { put } 1-x=t] $

$ =[\text { Put } 1-x=t]$

=

$=\int_0^1\left(t^n-t^{n+1}\right) d t=\left|\frac{t^{n+1}}{n+1}-\frac{t^{n+2}}{n+2}\right|_0^1 $

$ =\frac{1}{n+1}-\frac{1}{n+2}=\frac{1}{(n+1)(n+2)} $

$\text { Integrating R.H.S of (1) we get }\left.\left(\frac{C_0 x^2}{2}-\frac{C_1 x^3}{3}+\frac{C_2 x^4}{4}-\right)\right|_0 ^1 $

$=\frac{C_0}{2}-\frac{C_1}{3}+\frac{C_2}{4}-\ldots .=\frac{1}{(n+1)(n+2)} $

$ \text { Thus, } \frac{C_0}{2}-\frac{C_1}{3}+\frac{C_2}{4}-\ldots . \quad=$

Hence, the answer is option (4).

xample 4: If $\mathrm{C}_0, \mathrm{C}_1, \mathrm{C}_2, \ldots, \mathrm{C}_n$ be binomial coefficients in the expansion of $(1+x)^n$ Find the value of $3 C_0+3^2 \frac{C_1}{2}+\frac{3^3 C_2}{3}+\frac{3^4 C_3}{4}+\ldots+\frac{3^{n+1} C_n}{n+1}$.

1) $\frac{4^n-1}{n+1}$

2) $\frac{4^{n+1}+1}{n+1}$

3) $\frac{4^{n+1}-1}{n+1}$

4) $\frac{4^n-1}{n+1}$

Solution:

$(1+x)^n=C_0+C_1 x+C_2 x^2+C_3 x^3+\ldots+C_n x^n $

Integrating within limits $0$ to$ 3$ , then we get,

$\int_0^3(1+x)^n d x=\int_0^3\left(C_0+C_1 x+C_2 x^2+C_3 x^3+\ldots+C_n x^n\right) d x$

$\Rightarrow\left[\frac{(1+x)^{n+1}}{n+1}\right]_0^3=\left[C_0 x+\frac{C_1 x^2}{2}+\frac{C_2 x^3}{3}+\frac{C_3 x^4}{4}+\ldots .+\frac{C_n x^{n+1}}{n+1}\right] $

$\Rightarrow \frac{4^{n+1}-1}{n+1}=3 C_0+\frac{3^2 C_1}{2}+\frac{3^3 C_2}{3}+\frac{3^4 C_3}{4}+\ldots+\frac{3^{n+1} C_n}{n+1} $

Hence,

$3 C_0+\frac{3^2 C_1}{2}+\frac{3^3 C_2}{3}+\frac{3^4 C_3}{4}+\ldots+\frac{3^{n+1} C_n}{n+1}=\frac{4^{n+1}-1}{n+1} $

Hence, the answer is option (3).

Example 5: $\frac{C_0}{1}+\frac{C_1}{2}+\frac{C_2}{3}+\ldots+\frac{C_n}{n+1}=$

1) $\frac{2^n}{n+1}$

2) $\frac{2^n-1}{n+1}$

3) $\frac{2^{n+1}-1}{n+1}$

4) None of these

Solution:

Consider the expansion $(1+x)^n=C_0+C_1 x+C_2 x^2+\ldots .+C_n x^n$

Integrating both sides of (i) within limits $0$ to $1$ we get.

$ \int_0^1(1+x)^n d x=\int_0^1 C_0+\int_0^1 C_1 x+\int_0^1 C_2 x^2+\ldots \ldots+\int_0^1 C_n x^n d x$

$ {\left[\frac{(1+2)^{n+1}}{n+1}\right]_0^1=C_0[x]_0^1+C_1\left[\frac{x^2}{2}\right]_0^1+\ldots \ldots+C_n\left[\frac{x^{n+1}}{n+1}\right]_0^1} $

$ \frac{2^{n+1}}{n+1}-\frac{1}{n+1}-C_0[1]+C_1 \frac{1}{2}+C_2 \frac{1}{3}+\ldots \ldots+C_n \cdot \frac{1}{n+1} ; C_0+\frac{C_1}{2}+\frac{C_2}{3}+\ldots+\frac{C_n}{n+1}-\frac{2^{n+1}-1}{n+1} $

Hence, the answer is option (3).


Frequently Asked Questions (FAQs)

Q: What is the significance of the residue theorem in integrating complex binomial expansions?
A:
The residue theorem becomes significant when integrating complex binomial expansions:
Q: How does the concept of convergence apply to integrals involving infinite binomial expansions?
A:
Convergence is crucial when dealing with integrals involving infinite binomial expansions:
Q: What is the relationship between integrating binomial expansions and solving recurrence relations?
A:
Integrating binomial expansions and solving recurrence relations are related in several ways:
Q: How does the concept of partial fractions decomposition apply to integrating binomial expansions?
A:
Partial fractions decomposition can be useful when integrating certain forms of binomial expansions:
Q: What is the significance of the beta function in integrating binomial expansions?
A:
The beta function is significant in integrating binomial expansions because:
Q: How does the integration of binomial expansions relate to probability distributions?
A:
The integration of binomial expansions is closely related to probability distributions:
Q: What role does the fundamental theorem of calculus play in integrating binomial expansions?
A:
The fundamental theorem of calculus is crucial in integrating binomial expansions:
Q: How does the concept of improper integrals apply to binomial expansions?
A:
Improper integrals of binomial expansions arise when:
Q: What is the significance of the substitution method in integrating binomial expansions?
A:
The substitution method is crucial in integrating many binomial expansions:
Q: How does the method of integration by parts apply to binomial expansions?
A:
Integration by parts can be useful when dealing with binomial expansions, especially in cases where the binomial is multiplied by another function: