The semiperimeter helps in calculating the area of a triangle using Heron’s formula, while the half angle formula is widely used in simplifying trigonometric expressions and solving equations. Understanding these formulas makes it easier to deal with triangle properties, area calculations, and trigonometric identities involving $\sin$, $\cos$, and $\tan$ in exams and practical applications. In this article, we will understand the semiperimeter and inradius formula, half angle formula in trigonometry, and their derivations with clear examples for better mathematics exam preparation.
This Story also Contains
The semiperimeter formula of a triangle is a simple but important concept in geometry and trigonometry. It is defined as half of the triangle’s perimeter and is denoted by $s=\frac{a+b+c}{2}$. This formula plays a key role in solving problems related to Heron’s formula, half-angle identities, and trigonometric relations in triangles.
The semiperimeter formula of a triangle is the sum of all three sides divided by two. If the sides are $a$, $b$, and $c$, then
$s = \frac{a+b+c}{2}$.
This value is widely used in calculating area, inradius, and solving triangle-based problems in geometry.
Using semiperimeter, the area of a triangle can be calculated without directly using the height.
Heron’s Formula:
$A = \sqrt{s(s-a)(s-b)(s-c)}$
where $s$ is the semiperimeter.
This makes the semiperimeter and area formula very useful in trigonometry and geometry.
Another important relation is between semiperimeter and inradius. The area of a triangle can also be expressed as:
$A = r \cdot s$
where $r$ is the inradius of the triangle. This formula highlights the role of semiperimeter in circle-related problems inside triangles.
Finding the area of any triangle when only sides are known.
Deriving relations involving inradius and circumradius.
Useful in problems involving incircle and excircle properties.
Applied in advanced trigonometry for proving half angle identities.
The half-angle formulas can be derived from the double-angle or reduction formulas. They are useful when the given angle is half the size of a standard angle.
The half-angle formulas are written with a $\pm$ sign. This does not mean both positive and negative are valid simultaneously. The correct sign is chosen depending on the quadrant in which $\frac{\alpha}{2}$ lies.
$\sin \left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$
$\cos \left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$
$\tan \left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$
Starting with the identity:
$\sin^2 \theta = \frac{1 - \cos (2\theta)}{2}$
Now replace $\theta$ with $\frac{\alpha}{2}$:
$\sin^2 \left(\frac{\alpha}{2}\right) = \frac{1 - \cos \alpha}{2}$
Taking square root:
$\sin \left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$
Using the identity:
$\cos^2 \theta = \frac{1 + \cos (2\theta)}{2}$
Substitute $\theta = \frac{\alpha}{2}$:
$\cos^2 \left(\frac{\alpha}{2}\right) = \frac{1 + \cos \alpha}{2}$
Taking square root:
$\cos \left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$
Start with:
$\tan^2 \theta = \frac{1 - \cos (2\theta)}{1 + \cos (2\theta)}$
Substitute $\theta = \frac{\alpha}{2}$:
$\tan^2 \left(\frac{\alpha}{2}\right) = \frac{1 - \cos \alpha}{1 + \cos \alpha}$
Taking square root:
$\tan \left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$
Simplifying higher power trigonometric functions.
Converting equations into quadratic forms.
Solving integration problems in calculus.
Useful in problems involving exact values of non-standard angles.
The semiperimeter and half angle formula combined provides a strong link between geometry and trigonometry. Using the semiperimeter $s=\frac{a+b+c}{2}$, we can express the half-angle identities for sine, cosine, and tangent in terms of the triangle’s sides. This relation is especially useful in deriving formulas involving the inradius, area, and trigonometric ratios of a triangle.
The semiperimeter and half angle formula are often linked. In a triangle with sides $a, b, c$, we use:
$\sin^2 \frac{A}{2} = \frac{(s-b)(s-c)}{bc}$
$\cos^2 \frac{A}{2} = \frac{s(s-a)}{bc}$
These connect half angle identities with the semiperimeter.
In this section, we will see the half angle formulas using the semi perimeter. i.e., these are the half angle formulas in terms of sides of a triangle. Let us consider a triangle ABC where AB = c, BC = a, and CA = b.
We know that the semi-perimeter of the triangle is
$
s=\frac{a+b+c}{2}
$
From this, we have
$
2 s=a+b+c
$
Derivation of Half-Angle Formula for Cosine
$
\begin{gathered}
\cos A=2 \cos ^2\left(\frac{A}{2}\right)-1 \quad \text { (or) } \\
2 \cos ^2\left(\frac{A}{2}\right)=1+\cos A
\end{gathered}
$
Now using the law of cosines,
$
\begin{gathered}
2 \cos ^2\left(\frac{A}{2}\right)=1+\frac{b^2+c^2-a^2}{2 b c} \\
2 \cos ^2\left(\frac{A}{2}\right)=\frac{2 b c+b^2+c^2-a^2}{2 b c} \\
2 \cos ^2\left(\frac{A}{2}\right)=\frac{(b+c)^2-a^2}{2 b c} \\
2 \cos ^2\left(\frac{A}{2}\right)=\frac{(b+c+a)(b+c-a)}{2 b c} \\
2 \cos ^2\left(\frac{A}{2}\right)=\frac{2 s(2 s-2 a)}{2 b c} \\
2 \cos ^2\left(\frac{A}{2}\right)=\frac{2 s(s-a)}{b c} \\
\cos ^2\left(\frac{A}{2}\right)=\frac{s(s-a)}{b c} \\
\cos ^2\left(\frac{A}{2}\right)=\sqrt{\frac{s(s-a)}{b c}}
\end{gathered}
$
Similarly, we can derive other half-angle identities for cosine using the semi-perimeter.
Derivation of Half-Angle Formula for Sine
$
\sin ^2\left(\frac{A}{2}\right)=\frac{1-\cos A}{2}
$
Using the law of cosines:
$
\begin{gathered}
\sin ^2\left(\frac{A}{2}\right)=\frac{1}{2}\left[1-\frac{b^2+c^2-a^2}{2 b c}\right] \\
=\frac{1}{2} \cdot \frac{a^2-(b-c)^2}{2 b c} \\
=\frac{1}{2} \cdot \frac{(a+b-c)(a+c-b)}{2 b c} \\
=\frac{1}{2} \cdot \frac{(a+b+c-2 c)(a+b+c-2 b)}{2 b c} \\
=\frac{1}{2} \cdot \frac{(2 s-2 c)(2 s-2 b)}{2 b c} \\
=\frac{(s-b)(s-c)}{b c} \\
\Rightarrow \sin \left(\frac{A}{2}\right)=\sqrt{\frac{(s-b)(s-c)}{b c}}
\end{gathered}
$
Half-Angle Formula for Tangent
The half-angle formula for the tangent function can be derived using:
$
\tan \left(\frac{A}{2}\right)=\frac{\sin \left(\frac{A}{2}\right)}{\cos \left(\frac{A}{2}\right)}
$
Find unknown angles using side lengths.
Compute area using both $s$ and half angle relations.
Prove advanced trigonometric identities.
Solve competitive exam questions involving semiperimeter and half angle formula together.
Solution:
Half-Angle Formula (in terms of perimeter and sides of the triangle)
$
\begin{aligned}
& \tan \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \\
& \tan \frac{B}{2}=\sqrt{\frac{(s-a)(s-c)}{s(s-b)}} \\
& \tan \frac{C}{2}=\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}
\end{aligned}
$
Hence, the answer is sides of triangle $A B C$ will be in $A P$
Example 2: If in a triangle $\mathrm{ABC},(s-a)(s-b)=s(s-c)$ then angle C is equal to.
Solution: Half-Angle Formula (in terms of perimeter and sides of the triangle.
$
\begin{aligned}
& \tan \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \\
& \tan \frac{B}{2}=\sqrt{\frac{(s-a)(s-c)}{s(s-b)}} \\
& \tan \frac{C}{2}=\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}
\end{aligned}
$
$
\begin{aligned}
\tan \frac{C}{2} & =\sqrt{\frac{(s-a)(s-b)}{s(s-c)}} \because(s-a)(s-b)=s(s-c) \\
\tan \frac{C}{2}=1 & =\tan \frac{\pi}{4} \\
C & =\frac{\pi}{2}
\end{aligned}
$
Hence, the answer is angle C is $\frac{\pi}{2}$
Example 3: The value of $\tan \frac{B}{2} \tan \frac{C}{2}$ if $\mathrm{b}+\mathrm{c}=2 \mathrm{a}$, is.
Solution:
$
\begin{aligned}
& \tan \frac{B}{2} \tan \frac{C}{2} \\
& =\sqrt{\frac{(s-a)(s-c)}{s(s-b)}} \sqrt{\frac{(s-a)(s-b)}{s(s-c)}} \\
& =\frac{s-a}{s} \\
& =\frac{b+c-a}{a+b+c} \\
& =\frac{1}{3}
\end{aligned}
$
Hence, the answer is $\frac{1}{3}$
Example 4: In triangle ABC if $\tan \frac{A}{2}=\frac{3}{8}$ and $\tan \frac{C}{2}=\frac{8}{9}$ then sides $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in
Solution:
$
\begin{aligned}
& \tan \frac{A}{2} \tan \frac{C}{2} \\
& =\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \sqrt{\frac{(s-a)(s-b)}{s(s-c)}} \\
& =\frac{s-b}{b} \\
& =\frac{a+c-b}{a+b+c}=\frac{3}{9}
\end{aligned}
$
(since $\tan \frac{A}{2}=\frac{3}{8}$ and $\tan \frac{C}{2}=\frac{8}{9}$ )
$
\begin{aligned}
& \Rightarrow 3(a+c-b)=a+b+c \\
& a+c=2 b
\end{aligned}
$
$a, b, c$ are in A.P.
Hence, the answer is A.P
Solution: Trigonometric Ratios of Functions -
$\operatorname{cosec} \theta=\frac{H y p}{O p p}$
$\sec \theta=\frac{H y p}{\text { Base }}$
$\cot \theta=\frac{\text { Base }}{\text { Opp }}$
- wherein
$
\begin{aligned}
& \cot \frac{A}{2} \cdot \cot \frac{B}{2} \cdot \cot \frac{C}{2} \\
& =\frac{s(s-a)}{\Delta} \cdot \frac{s(s-b)}{\Delta} \cdot \frac{s(s-c)}{\Delta} \\
& =\frac{s^3(a+b+c)}{\Delta^3}=\frac{s^2 \Delta^2}{\Delta^3}=\frac{s^2}{\Delta} \\
& =\left(\frac{\Delta^2}{r^2}\right) \times \frac{1}{\Delta}=\frac{\Delta}{r^2} \\
& \cot \frac{A}{2} \cdot \cot \frac{B}{2} \cdot \cot \frac{C}{2}=\frac{\Delta}{r^2}
\end{aligned}
$
Hence, the answer is $\frac{\Delta}{r^2}$
The following is a list of topics related to semiperimeter and half angle formula that covers key concepts, formulas, and applications in trigonometry and geometry. These topics will help in solving triangle-based problems, area calculations, and simplifying trigonometric expressions.
For a clear understanding of Trigonometric Functions, NCERT notes, solutions, and exemplar are the best resources. Below are the recommended NCERT materials for Chapter 3.
NCERT Class 11 Maths Notes for Chapter 3 - Trigonometric Functions
NCERT Class 11 Maths Solutions for Chapter 3 - Trigonometric Functions
NCERT Class 11 Maths Exemplar Solutions for Chapter 3 - Trigonometric Functions
This section provides practice questions based on semiperimeter and half angle formula to strengthen problem-solving skills. These questions help in applying formulas effectively and preparing for exams with confidence.
Semiperimeter and Half Angle Formulae - Practice Question MCQ
You can practice questions on the related topics by using the links shared below:
Frequently Asked Questions (FAQs)
Using semiperimeter $s$, the half angle formulas in a triangle are:
$\sin\frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{bc}}$,
$\cos\frac{A}{2}=\sqrt{\frac{s(s-a)}{bc}}$,
$\tan\frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$.
The half angle property in trigonometry states that the trigonometric functions of half an angle (like $\sin\frac{\theta}{2}$, $\cos\frac{\theta}{2}$, $\tan\frac{\theta}{2}$) can be expressed in terms of the sides of a triangle using the semiperimeter.
The half angle property in trigonometry states that the trigonometric functions of half an angle (like $\sin\frac{\theta}{2}$, $\cos\frac{\theta}{2}$, $\tan\frac{\theta}{2}$) can be expressed in terms of the sides of a triangle using the semiperimeter.
The semiperimeter of a triangle is half of its perimeter. It is given by $s=\frac{a+b+c}{2}$, where $a$, $b$, and $c$ are the sides of the triangle.
The perimeter is the total sum of all three sides of a triangle, while the semiperimeter is exactly half of that value, i.e., $s=\frac{\text{perimeter}}{2}$.
To calculate the semiperimeter, add the three sides of the triangle and divide by 2: $s=\frac{a+b+c}{2}$.
Heron’s formula is used to calculate the area of a triangle when all three sides are known: $A=\sqrt{s(s-a)(s-b)(s-c)}$.
Using semiperimeter $s$, the half angle formulas in a triangle are:
$\sin\frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{bc}}$,
$\cos\frac{A}{2}=\sqrt{\frac{s(s-a)}{bc}}$,
$\tan\frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$.