Angle of Intersection between Two Curves: Formula, Examples

Angle of Intersection between Two Curves: Formula, Examples

Komal MiglaniUpdated on 02 Jul 2025, 07:51 PM IST

The angle of Intersection is an important concept in calculus. It is used to find out the angle between the curves. The tangent line to the curve is a straight line that touches a curve at a single point without crossing it at that point. These concepts of Angle of Intersection between two curves have been broadly applied in branches of mathematics, physics, engineering, economics, and biology.

This Story also Contains

  1. The angle of Intersection of Two Curves
  2. Orthogonal Curves
  3. Solved Examples Based On Angle of Intersection of Two Curves:
Angle of Intersection between Two Curves: Formula, Examples
Angle of Intersection between Two Curves: Formula, Examples

In this article, we will cover the concept of the Angle of Intersection of two Curves. This topic falls under the broader category of Calculus, which is a crucial chapter in Class 11 Mathematics. This is very important not only for board exams but also for competitive exams, which even include the Joint Entrance Examination Main and other entrance exams: SRM Joint Engineering Entrance, BITSAT, WBJEE, and BCECE. A total of six questions have been asked on this topic in JEE Main from 2013 to 2023, including one in 2013, one in 2018, one in 2019, and three in 2021.

What is the Angle of Intersection?

The angle of intersection of two curves is defined as the angle between the tangents to the two curves at their point of intersection
Let $C_1$ and $C_2$ be two curves having equations $y=f(x)$ and $y=g(x)$, respectively.
Let $P T_1$ and $P T_2$ be two tangents to the curves $C_1$ and $C_2$ at their point of intersection.
Let $\theta$ be the angle between the two tangents $P T_1$ and $P T_2$ and $\theta_1$ and do tangents make the angles with the positive direction of the X -axis in the anti-clockwise sense.

Then

$
m_2=\tan \theta_2=\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{C_2}
$


From the figure it follows, $\theta=\theta_2-\theta_1$

$
\begin{aligned}
& \Rightarrow \tan \theta=\tan \left(\theta_2-\theta_1\right)=\frac{\tan \theta_2-\tan \theta_2}{1+\tan \theta_2 \tan \theta_1} \\
& \Rightarrow=\tan \theta\left|\frac{\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{C_1}-\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{C_2}}{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{C_1}\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{C_2}}\right|
\end{aligned}
$

The intersection of these curves is defined as the acute angle between the tangents.

The angle of Intersection of Two Curves

Let y = f (x) and y = g (x) be two curves intersecting at a point P(x0, y0) . Then the angle of intersection of two curves is defined as the angle between the tangent to the two curves at the point of intersection.

Let $P T_1$ and $P T_2$ be tangents to the curve $y=f(x)$ and $y=g(x)$ at their point of intersection.
Let $\Theta$ be the angle between two tangents $P T_1$ and $P T_2, \Theta_1$ and $\Theta_2$ are angles made by tangents $P T_1$ and $P T_2$ with the positive direction of $x$-axis, then

$
\begin{aligned}
& m_1=\tan \theta_1=\left(\frac{d}{d x}(f(x))\right)_{\left(x 0, y_0\right)} \\
& m_2=\tan \theta_2=\left(\frac{d}{d x}(g(x))\right)_{\left(x_0, y_0\right)}
\end{aligned}
$

from the figure $\theta=\theta_1-\theta_2$

$
\begin{aligned}
& \Rightarrow \tan \theta=\tan \left(\theta_1-\theta_2\right)=\frac{\tan \theta_1-\tan \theta_2}{1+\tan \theta_1 \cdot \tan \theta_2} \\
& \Rightarrow \tan \theta=\left|\frac{\left(\frac{\mathbf{d}}{\mathrm{dx}}(\mathbf{f}(\mathbf{x}))\right)_{\left(\mathbf{x}_0, \mathbf{y}_{\mathbf{o}}\right)}-\left(\frac{\mathrm{d}}{\mathrm{dx}}(\mathbf{g}(\mathbf{x}))\right)_{\left(\mathbf{x}_0, \mathbf{y}_{\mathbf{o}}\right)}}{1+\left(\frac{\mathrm{d}}{\mathrm{dx}}(\mathbf{f}(\mathbf{x}))\right)_{\left(\mathbf{x}_{\mathbf{0}}, \mathbf{y}_{\mathbf{o}}\right)} \cdot\left(\frac{\mathrm{d}}{\mathbf{d x}}(\mathbf{g}(\mathbf{x}))\right)_{\left(\mathbf{x}_0, \mathbf{y}_0\right)}}\right|
\end{aligned}
$

Orthogonal Curves

If the angle of the intersection of two curves is a right angle then two curves are called orthogonal curves.
In this case, $\tan \theta=90^{\circ}$

$
\Rightarrow\left(\frac{d}{d x}(f(x))\right)_{\left(x_0, y_0\right)} \cdot\left(\frac{d}{d x}(g(x))\right)_{\left(x_0, y_0\right)}=-1
$

this is also the condition for two curves to be orthogonal.

Condition for two curves to touch each other

$
\left(\frac{d}{d x}(f(x))\right)_{\left(x_0, y_0\right)}=\left(\frac{d}{d x}(g(x))\right)_{\left(x_0, y_0\right)}
$

Recommended Video Based on Angle of Intersection of Two Curves:


Solved Examples Based On Angle of Intersection of Two Curves:

Example 1: If the curves $y^2=6 x, 9 x^2+b y^2=16$ intersect each other at right angles, then the value of b is :
[JEE Main 2028]
1) $9 / 2$
2) 6
3) $7 / 2$
4) 4

Solution
As we have learned
Condition of Orthogonality -
Two curves intersect each other orthogonally if the tangents to each of them subtend a right angle at the point of intersection of two curves:

$
m_1 \times m_2=-1
$

$
\begin{aligned}
& y^2=6 x \ldots \ldots \ldots \\
& 9 x^2+6 b x=16
\end{aligned}
$

$\qquad$ $\qquad$
Slope of tangent of first curve

$
\begin{aligned}
& 2 y \frac{d y}{d x}=6 \Rightarrow \frac{d y}{d x}=\frac{6}{2 y} \\
& m_1=\frac{6}{2 y}
\end{aligned}
$


Slope of tangent of second curve

$
\begin{aligned}
& 18 x+2 b y \frac{d y}{d x}=0 \\
& \Rightarrow \frac{d y}{d x}=\frac{-9 x}{b y} \\
& \frac{-9 x}{b y}=m_2
\end{aligned}
$

So $m_1 \times m_2=-1$

$
\begin{aligned}
& m_1 m_2=-1 \\
& \left(\frac{6}{2 y}\right)\left(\frac{-b x}{9 y}\right)=1 \\
& -27 x=-b y^2 \\
& -27 x=-b(6 x) \\
& b=\frac{27}{6}=\frac{9}{2}
\end{aligned}
$

Example 2: $\lim _{y \rightarrow 0} \frac{\sqrt{1+\sqrt{1+y^4}}-\sqrt{2}}{y^4}$
[JEE Main 2019]
1) exists and equals $\frac{1}{4 \sqrt{2}}$
2) exists and equals $\frac{1}{2 \sqrt{2}(\sqrt{2}+1)}$
3) exists and equals $\frac{1}{2 \sqrt{2}}$
4) does not exist|

Solution
Angle of intersection of two curves -
The angle of intersection of two curves is the angle subtended between the tangents at their point of intersection Let $m_1$ \& $m_2$ are two slope of tangents at intersection point of two curves then

$
\tan \theta=\frac{\left[m_1-m_2\right]}{1+m_1 m_2}
$

where $\theta$ is angle between two curves tangents.

$
\lim _{y \rightarrow 0} \frac{\sqrt{1+\sqrt{1+r^4}}-\sqrt{2}}{y^4}
$

$
\begin{aligned}
& \Rightarrow \lim _{y \rightarrow 0} \frac{\sqrt{1+\sqrt{1+y^4}}-\sqrt{2}}{y^4} \times \frac{\sqrt{1+\sqrt{1+y^4}}+\sqrt{2}}{\sqrt{1+\sqrt{1+y^4}}+\sqrt{2}} \\
& \Rightarrow \lim _{y \rightarrow 0} \frac{1+\sqrt{1+y^4}-2}{y^4\left(\sqrt{1+\sqrt{1+y^4}}\right)+\sqrt{2}}
\end{aligned}
$

again factorize

$
\begin{aligned}
& \Rightarrow \lim _{y \rightarrow 0} \frac{\left(\sqrt{1+y^4}\right)-1}{y^4\left(\sqrt{1+\sqrt{1+y^4}}\right)+\sqrt{2}} \times \frac{\sqrt{1+y^4}+1}{\sqrt{1+y^4}+1} \\
& \Rightarrow \lim _{y \rightarrow 0} \frac{1+y^4-1}{y^4\left(\sqrt{1+\sqrt{1+y^4}+\sqrt{2}}\right)\left(\sqrt{1+y^4}+1\right)} \\
& \Rightarrow \lim _{y \rightarrow 0} \frac{1}{\left(\sqrt{1+\sqrt{1+y^4}+\sqrt{2}}\right)\left(\sqrt{1+y^4}+1\right)}=\frac{1}{4 \sqrt{2}}
\end{aligned}
$

ellipse $\frac{x^2}{9}+\frac{y^2}{1}=1$ and the circle $x^2+y^2=3$


Example 3: Let $\theta$ be the acute angle between the tangents to the at their point of intersection in the first quadrant. Then $\tan \Theta$ is equal to:
[JEE Main 2021]
1) $\frac{5}{2 \sqrt{3}}$
2) $\frac{4}{\sqrt{3}}$
3) $\frac{2}{\sqrt{3}}$
4) 2

Solution

$
\begin{aligned}
& x^2=3-y^2, \frac{x^2}{9}+y^2=1 \\
& \Rightarrow 3-y^2+3 y^2=9 \Rightarrow 8 y^2=6 \\
& \Rightarrow x^2=3-\frac{3}{4}=\frac{9}{4} \Rightarrow x= \pm \frac{3}{2}
\end{aligned}
$

So, the point of intersection in the first quadrant is

$
\left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right)
$
Slope of Tangent to ellipse

$
=m_1: \frac{-1}{9} \frac{x_1}{y_1}=\frac{-\sqrt{3}}{9} \text { slope of Tangent to circle }=m_2: \frac{-x_1}{y_1}=-\sqrt{3}
$

$\tan \theta=\left|\frac{m_1-m_2}{1+m_1 m_2}\right|=\left|\frac{\sqrt{3}-\frac{\sqrt{3}}{9}}{1+\frac{3}{9}}\right|$

$
=\frac{8 \sqrt{3}}{12}=\frac{2 \sqrt{3}}{3}=\frac{2}{\sqrt{3}}
$
Hence, the answer is the option (3).


Example 4: An angle of intersection of the curves $\frac{x^2}{\mathrm{a}^2}+\frac{y^2}{\mathrm{~b}^2}=1$ and $x^2+y^2=\mathrm{ab}, \mathrm{a}>\mathrm{b}$ is :
[JEE Main 2021]

$
\begin{aligned}
& \text { 1) } \tan ^{-1}(2 \sqrt{a b}) \\
& \tan ^{-1}\left(\frac{a+b}{\sqrt{a b}}\right) \\
& \text { 2) } \tan ^{-1}\left(\frac{a-b}{\sqrt{a b}}\right) \\
& \text { 4) } \tan ^{-1}\left(\frac{a-b}{2 \sqrt{a b}}\right)
\end{aligned}
$

Solution

Find a point of intersection of the curves

$
\begin{aligned}
& x^2=a b-y^2 \\
& \Rightarrow \frac{a b-y^2}{a^2}+\frac{y^2}{b^2}=1 \\
& \Rightarrow y^2\left(\frac{1}{b^2-\frac{1}{a^2}}\right)=1-\frac{a b}{a^2}=1-\frac{b}{a} \\
& \Rightarrow y^2 \frac{\left(a^2-b^2\right)}{a^2 b^2}=\frac{a-b}{a} \\
& \Rightarrow y^2=\frac{a b^2}{a+b} \Rightarrow y=b \sqrt{\frac{a}{a+b}} \\
& x^2=a b-\frac{a b^2}{a+b}=\frac{a^2 b}{a+b} \Rightarrow x=a \sqrt{\frac{b}{a+b}} \\
& \text { So, }\left(x_1, y_1\right)=\left(a \sqrt{\frac{b}{a+b}}, b \sqrt{\frac{a}{a+b}}\right) \\
& C_1: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1
\end{aligned}
$

Slope of tangent at $\left(x_1, y_1\right)$

$
\begin{aligned}
& m_1=\frac{-x_1 b^2}{y_1 a^2}=\frac{-a \sqrt{b}}{b \sqrt{a}} \times \frac{b^2}{a^2}=-\left(\frac{b}{a}\right)^{3 / 2} \\
& C_2: x^2-y^2=a b
\end{aligned}
$

Slope of tangent at $\left(x_1, y_1\right)$

$
\begin{aligned}
& m_2=\frac{-x_1}{y_1}=\frac{-a \sqrt{b}}{b \sqrt{a}}=-\left(\frac{a}{b}^{1 / 2}\right) \\
& \tan \theta=\left|\frac{m_1-m_2}{1+m_1 m_2}\right|:\left|\frac{-\frac{b \sqrt{b}}{a \sqrt{a}}+\frac{\sqrt{a}}{\sqrt{b}}}{1+\frac{b \sqrt{b}}{a \sqrt{a}} \times \frac{\sqrt{a}}{\sqrt{b}}}\right|=\left|\frac{\frac{a^2-b^2}{a \sqrt{a b}}}{\frac{a+b}{a}}\right| \\
& \Rightarrow \theta=\tan ^{-1}\left(\frac{a-b}{\sqrt{a b}}\right)
\end{aligned}
$

Hence, the answer is the option (2).

Example 3: $\frac{x^2}{\alpha}+\frac{y^2}{4}=1$ and $y^3=16 x$ intersect at right angles, then a value of $\alpha$ is:
[JEE Main 2013]
1) 2
2) $\frac{4}{3}$
3) $\frac{1}{2}$
4) $\frac{3}{4}$

Solution

$
\begin{aligned}
& \frac{x^2}{\alpha}+\frac{y^2}{4}=1 \Rightarrow \frac{2 x}{\alpha}+\frac{2 y}{4} \cdot \frac{d y}{d x}=0 \\
& \Rightarrow \frac{d y}{d x}=\frac{-4 x}{\alpha y} \\
& y^3=16 x \\
& \Rightarrow 3 y^2 \frac{d y}{d x}=16 \\
& \Rightarrow \frac{d y}{d x}=\frac{16}{3 y^2}
\end{aligned}
$

Since, the curves intersect at right angles, then

$
\begin{aligned}
& \therefore \frac{-4 x}{\alpha y} \times \frac{16}{3 y^2}=-1 \Rightarrow 3 \alpha y^3=64 x \\
& \Rightarrow \alpha=\frac{64 x}{3 \times 16 x}=\frac{4}{3}
\end{aligned}
$

Hence, the answer is the option (2).

Frequently Asked Questions (FAQs)

Q: Can the angle of intersection be used to analyze the behavior of fluid flow?
A:
Yes, in fluid dynamics, the angle of intersection between streamlines can provide information about the flow's behavior, such as areas of convergence, divergence, or rotation.
Q: How does the angle of intersection relate to the concept of cross-product in vector algebra?
A:
The magnitude of the cross-product of two vectors is related to the sine of the angle between them. This relationship is analogous to how the angle of intersection is calculated using the tangent of the angle between curve tangents.
Q: What's the significance of the angle of intersection in computer vision and image processing?
A:
In computer vision, the angle of intersection between edges or contours in an image can be used for feature detection, object recognition, and understanding the geometry of scenes.
Q: How does the concept of angle of intersection apply to fractal geometry?
A:
In fractal geometry, the angle of intersection between different parts of a fractal can be a key characteristic of the fractal's structure. Some fractals maintain consistent intersection angles at different scales, contributing to their self-similarity.
Q: What's the significance of the angle of intersection in complex analysis?
A:
In complex analysis, the angle of intersection between curves can provide information about the behavior of complex functions. For example, analytic functions preserve angles, which is a key property in conformal mapping.
Q: How does the angle of intersection change under a conformal mapping?
A:
Conformal mappings preserve angles. Therefore, if you apply a conformal mapping to two intersecting curves, the angle of intersection will remain the same in the transformed space.
Q: How does the angle of intersection relate to the concept of divergence in vector fields?
A:
While not directly related, both concepts involve the behavior of curves or vector fields at specific points. The divergence measures the "spreading out" of a vector field, which can affect how curves defined by that field might intersect.
Q: Can the angle of intersection be used to determine the stability of a system in dynamical systems theory?
A:
While the angle of intersection alone isn't typically used to determine stability, it can provide insights into the behavior of trajectories in phase space. For example, trajectories intersecting at right angles might indicate certain types of bifurcations.
Q: How does the angle of intersection relate to the concept of geodesics in differential geometry?
A:
In differential geometry, geodesics are curves that locally minimize distance. The angle of intersection between a geodesic and another curve on a surface can provide information about the curvature of the surface and the nature of the non-geodesic curve.
Q: What's the relationship between the angle of intersection and the concept of characteristic curves in partial differential equations?
A:
Characteristic curves in PDEs are curves along which information propagates. The angle of intersection between characteristic curves and level curves of the solution can provide information about how the solution varies in different directions.