Imagine you’re painting a long wooden board, and you suddenly notice that the pattern on the left half perfectly mirrors the pattern on the right. If you only calculate the area of one side, you can instantly predict the other — saving effort without losing accuracy. Definite integrals work the same way when the function is even or odd. By spotting symmetry about the y-axis or origin, you can turn long, messy integrals into quick, elegant evaluations. In this article, we’ll walk through how even–odd properties simplify definite integrals, important formulas you must remember, and exam-level mathematics examples that show exactly when and how to apply symmetry to speed up your solutions.
This Story also Contains
Definite integration calculates the area under a curve between two specific points on the x-axis.
Let f be a function of x defined on the closed interval [a, b]. F be another function such that $\frac{d}{d x}(F(x))=f(x)$ for all x in the domain of f, then $\int_a^b f(x) d x=[F(x)+c]_a^b=F(b)-F(a)$is called the definite integral of the function f(x) over the interval [a, b], where a is called the lower limit of the integral and b is called the upper limit of the integral.
Definite integrals have properties that relate to the limits of integration.
$\int_{-a}^a f(x) d x=\left\{\begin{array}{ccc}0, & \text { if } f \text { is an odd function } & \text { i.e. } f(-x)=-f(x) \\ 2 \int_0^a f(x) d x, & \text { if } f \text { is an even function } & \text { i.e. } f(-x)=f(x)\end{array}\right.$
$\begin{aligned} \int_{-\mathrm{a}}^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dx} & =\underbrace{\int_{-a}^0 f(x) d x}_{x=-t}+\int_0^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dx} \\ & =\int_a^0 f(-t)(-d t)+\int_0^a f(x) d x \\ & =\int_0^a f(-x)(d x)+\int_0^a f(x) d x \\ & =\left\{\begin{array}{cc}-\int_0^a f(x) d x+\int_0^a f(x) d x, & \text { if } \mathrm{f}(\mathrm{x}) \text { is odd } \\ \int_0^a f(x) d x+\int_0^a f(x) d x, & \text { if } \mathrm{f}(\mathrm{x}) \text { is even }\end{array}\right. \\ & =\left\{\begin{array}{cc}0, & \text { if } f \text { is an odd function } \\ 2 \int_0^a f(x) d x, & \text { if } f \text { is an even function }\end{array}\right.\end{aligned}$
Proof using Graph

The graph of the odd function is symmetric about the origin, as shown in the above figure
So, if $\int_0^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\alpha$ then, $\int_{-\mathrm{a}}^0 \mathrm{f}(\mathrm{x}) \mathrm{dx}=-\alpha$
$
\therefore \quad \int_{-a}^a f(x) d x=0
$

The graph of the even function is symmetric about the y-axis, as shown in the above figure
$\begin{array}{ll}\text { So, } & \int_{-a}^0 \mathrm{f}(\mathrm{x}) \mathrm{dx}=\int_0^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\alpha \\ \therefore & \int_{-a}^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=2 \alpha=2 \int_0^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dx}\end{array}$
Corollary:
$\int_0^{2 a} f(x) d x=\left\{\begin{array}{cc}2 \int_0^a f(x) d x, & \text { if } f(2 a-x)=f(x) \\ 0, & \text { if } f(2 a-x)=-f(x\end{array}\right.$
If f(x) is a periodic function with period T, then the area under f(x) for n periods would be n times the area under f(x) for one period, i.e.
$\int_0^{\mathrm{nT}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\mathrm{n} \int_0^{\mathrm{T}} \mathrm{f}(\mathrm{x}) \mathrm{dx}$
Graphical Method
f(x) is a periodic function with period T. Consider the following graph of function f(x).

The graph of the function is the same in each of the interval (0, T), (T, 2T), (2T, 3T) ……..
So,
$\begin{aligned} \int_0^{\mathrm{nT}} \mathrm{f}(\mathrm{x}) \mathrm{d} & =\text { total shaded area } \\ & =\mathrm{n} \times(\text { area in the interval }(0, \mathrm{~T})) \\ & =\mathrm{n} \int_0^{\mathrm{T}} \mathrm{f}(\mathrm{x}) \mathrm{dx}\end{aligned}$
$\int_a^{a+n T} f(x) d x=\int_0^{a T} f(x) d x=n \int_0^T f(x) d x$

$\begin{aligned} & \text { Let, } \begin{aligned} & \mathrm{I}=\int_{\mathrm{a}}^{\mathrm{a}+\mathrm{nT}} \mathrm{f}(\mathrm{x}) \mathrm{dx} \\ &=\int_{\mathrm{a}}^0 \mathrm{f}(\mathrm{x}) \mathrm{dx}+\int_0^{\mathrm{nT}} \mathrm{f}(\mathrm{x}) \mathrm{dx}+\underbrace{\int_{n T}^{a+n T} f(x) d x}_{x=y+n T} \\ & \Rightarrow \mathrm{dx}=\mathrm{dy} \text { and when } \mathrm{x}=\mathrm{nT} \text { then } \mathrm{y}=0 \text { and } \mathrm{x}=\mathrm{a}+\mathrm{nT}, \mathrm{y}=\mathrm{a} \\ &=\int_{\mathrm{a}}^0 \mathrm{f}(\mathrm{x}) \mathrm{dx}+\int_0^{\mathrm{nT}} \mathrm{f}(\mathrm{x}) \mathrm{dx}+\int_0^{\mathrm{a}} \mathrm{f}(\mathrm{y}) \mathrm{dy} \\ &=\mathrm{n} \int_0^{\mathrm{nT}} \mathrm{f}(\mathrm{x}) \mathrm{dx} \\ & {\left[\because \int_0^{\mathrm{a}} \mathrm{f}(\mathrm{y}) \mathrm{dy}=\int_0^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dx} \text { and } \int_0^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=-\int_{\mathrm{a}}^0 \mathrm{f}(\mathrm{x}) \mathrm{dx}\right] }\end{aligned}\end{aligned}$
$
\int_{\mathrm{a}+\mathrm{nT}}^{\mathrm{b}+\mathrm{nT}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{dx}
$
$
\int_{\mathrm{mT}}^{\mathrm{nT}} f(x) d x=(n-m) \int_0^{\mathrm{T}} f(x) d x
$
Where ‘T’ is the period and m and n are Integers.
Example 1: $\int_{-3 \pi / 2}^{-\pi / 2}\left[(x+\pi)^3+\cos ^2(x+3 \pi)\right] d x$ is equal to
1) $\frac{\pi^4}{32}$
2) $\frac{\pi^4}{32}+\frac{\pi}{2}$
3) $\frac{1}{2}$
4) $\frac{\pi}{2}-1$
Solution
As learnt in concept
Properties of definite integration -
If $f(x)$ is an EVEN function of x: then integral of the function from - a to a is the same as twice the integral of the same function from o to a.
$\int_{-a}^a f(x) d x=2\left\{\int_o^a f(x) d x\right\}$
wherein
Check even function $f(-x)=f(x)$ and symmetrical about y axis.
$
I=\int_{\frac{-3 \pi}{2}}^{-\frac{\pi}{2}}\left[(x+\pi)^3+\cos ^2(x+3 \pi)\right] d x
$
Put $x+\pi=t$
$
\begin{aligned}
& I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left[t^3+\cos ^2 t\right] d t \\
& I=2 \int_0^{\frac{\pi}{2}} \cos ^2 t d \\
& =\int_0^{\frac{\pi}{2}}[1+\operatorname{Cos} 2 t] d t \\
& {[t]_0^{\frac{\pi}{2}}+\left[\frac{\operatorname{Sin} 2 t}{2}\right]_0^{\frac{\pi}{2}}} \\
& \frac{\pi}{2}+0
\end{aligned}
$
Example 2: $\int_{-\pi}^\pi \frac{2 x(1+\sin x)}{1+\cos ^2 x} d x$ is
1) $\pi^2 / 4$
2) $\pi^2$
3) 0
4) $\pi / 2$
Solution
As we learnt in
Properties of definite integration -
If $f(x)$ is an EVEN function of x: then integral of the function from - a to a is the same as twice the integral of the same function from o to a.
$\int_{-a}^a f(x) d x=2\left\{\int_o^a f(x) d x\right\}$
- wherein
Check even function $f(-x)=f(x)$ and symmetrical about y axis.
And,
Properties of Definite Integration -
If $f(x)$ is an odd function of $x$ then integral of the function from -a to a is ZERO
$\int_{-a}^a f(x) d x=0$
- wherein
Check
Odd function $f(-x)=-f(x)$
And,
Properties of Definite Integration -
$\int_0^{2 a} f(x) d x=\int_0^a[f(x)+f(-x)] d x$
$=\left\{\begin{array}{cc}2 \int_0^a f(x) d x & \text { if } f(2 a-x)=f(x) \\ 0 & \text { if } f(2 a-x)=-f(x)\end{array}\right.$
- $I=\int_{-\pi}^\pi \frac{2 x(1+\sin x) d x}{1+\cos ^2 x}$
$I=\int_0^\pi\left(\frac{2 x(1+\sin x)-2 x+2 x \sin x}{\left(1+\cos ^2 x\right)}\right) d x$
$\begin{aligned} & I=\int_0^\pi \frac{4 x \sin x}{\left(1+\cos ^2 x\right)} d x \\ & I=\int_0^{\frac{\pi}{2}} \frac{4 \sin x}{1+\cos ^2 x}(x+\pi-x) d x \\ & I=4 \pi \int_0^{\frac{\pi}{2}} \frac{\sin x d x}{1+\cos ^2 x} \\ & I=4 \pi\left[\tan ^{-1}(\cos x)\right]^\pi \\ & I=4 \pi\left[0+\frac{\pi}{4}\right]=\pi^2\end{aligned}$
Example 3: The value of the integral $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sin ^4 x\left[1+\log \left[\frac{2+\sin x}{2-\sin x}\right]\right] d x$ is :
1) 0
2) $\frac{3}{4}$
3) $\frac{3}{8} \pi$
4) $\frac{3}{16} \pi$
Solution
Properties of definite integration -
If $f(x)$ is an EVEN function of x: then integral of the function from - a to a is the same as twice the integral of the same function from o to a.
$\int_{-a}^a f(x) d x=2\left\{\int_0^a f(x) d x\right\}$
- wherein
Check even function $f(-x)=f(x)$ and symmetrical about y axis.
Check
Odd function $f(-x)=-f(x)$
$\int_{-\pi}^{\frac{1}{2}} \sin ^4 x\left(1+\log \left(\frac{2+\sin x}{2-\sin x}\right)\right) d x$
$=2 \int_0^{\frac{\pi}{2}} \sin ^4 x d x+2 \int_0^{\frac{x}{2}} \sin ^4 x \log \frac{2+\sin x}{2-\sin x} d x$
Since value of $\int_0^{\frac{5}{2}} \sin ^4 x \log \frac{2+\sin x}{2-\sin x} d x=0$ (Odd function)
So,
$\begin{aligned} & \sin ^4 x=\frac{1}{4}(1-\cos 2 x)^2 \\ & \sin ^4 x=\frac{1}{4}\left(1+\cos ^2 2 x-2 \cos 2 x\right) \\ & \sin ^4 x=\frac{1}{4}\left(1+\frac{1+\cos 4 x}{2}-2 \cos 2 x\right)\end{aligned}$
$\begin{aligned} & I=2 \cdot \int_0^{\frac{\pi}{2}} \sin ^4(x) d x \\ & I=2 \cdot \int_0^{\frac{\pi}{2}} \frac{1}{4}\left(\frac{3+\cos (4 x)-8 \cos (2 x)}{2}\right) d x \\ & =\frac{3 \pi}{8}\end{aligned}$
Example 4: $\int_{-\Pi / 2}^{\Pi / 2} \frac{\cos x}{1+e^x} d x$ is equal to?
1) $1$
2) $2 $
3) $-1$
4) $-2$
Solution
Properties of definite integration -
If $f(x)$ is an EVEN function of x: then integral of the function from - a to a is the same as twice the integral of the same function from o to a.
$\int_{-a}^a f(x) d x=2\left\{\int_0^a f(x) d x\right\}$
- wherein
Check even function $f(-x)=f(x)$ and symmetrical about y axis.
$\begin{aligned} & I=\int_{-\pi / 2}^{\pi / 2} \frac{\cos x}{1+e^x} d x=\int_0^{\pi / 2}\left(\frac{\cos x}{1+e^x}+\frac{\cos (-x)}{1+e^x}\right) d x=\int_0^{\pi / 2} \cos x d x= \\ & {[\sin x]_0^{\pi / 2}=1}\end{aligned}$
Example 5: $\int_{-1}^1 \frac{\log \left(x+\sqrt{1+x^2}\right)}{x+\log \left(x+\sqrt{1+x^2}\right)}(f(x)-f(-x)) d x$ is euqal to?
1) $0$
2) $2 \int_0^1 \frac{\log \left(x+\sqrt{1+x^2}\right)}{x+\log \left(x+\sqrt{1+x^2}\right)}(f(x)-f(-x)) d x$
3) $2 f(x)$
4) none of these
Solution
As we learnt
Properties of definite integration -
If $f(x)$ is an EVEN function of x: then integral of the function from - a to a is the same as twice the integral of the same function from o to a.
$\int_{-a}^a f(x) d x=2\left\{\int_o^a f(x) d x\right\}$
- wherein
Check even function $f(-x)=f(x)$ and symmetrical about y axis.
$\operatorname{Let} \phi(x)=\frac{\log \left(x+\sqrt{1+x^2}\right)}{x+\log \left(x+\sqrt{1+x^2}\right)} ; g(x)=(f(x)-f(-x))$
f(x) is an even function $\int_{-1}^1(\phi(x) \cdot g(x)) d x=0$
g(x) is an odd function.
Explore key topics related to the application of even and odd function properties in definite integrals, alongside integral applications, particular functions, indefinite integrals, integration by parts, and inequalities. Understanding these concepts helps simplify evaluation and leverage symmetry in integral problems effectively.
Integral of Particular Functions
Explore comprehensive NCERT resources for Class 12 Maths Chapter 7 on Integrals, including detailed notes, complete solutions, and exemplar problem sets. These expertly curated materials support thorough understanding and effective exam preparation.
NCERT Class 12 Maths Notes for Chapter 7 - Integrals
NCERT Class 12 Maths Solutions for Chapter 7 - Integrals
NCERT Class 12 Maths Exemplar Solutions for Chapter 7 - Integrals
Strengthen your grasp of even-odd function properties in definite integrals with these practice questions. These problems enhance your ability to apply symmetry concepts for simplifying and solving integrals confidently.
Application Of Even Odd Properties In Definite Integration- Practice Question MCQ
We have provided below the practice questions related to different concepts of integration to improve your understanding:
Frequently Asked Questions (FAQs)
Only the zero function $f(x) = 0$ is both even and odd.
For odd $f(x)$, $\int_{-a}^a f(x) dx = 0$ due to symmetry causing areas on $[-a,0]$ and $[0,a]$ to cancel.
For even $f(x)$, $\int_{-a}^a f(x) dx = 2 \int_0^a f(x) dx$. This halves the work by integrating only over $[0,a]$.
An odd function satisfies $f(-x) = -f(x)$ for all $x$, meaning its graph is symmetric about the origin.
An even function satisfies $f(-x) = f(x)$ for all $x$. This symmetry means the graph is mirrored about the y-axis.