Question : If $\mathrm{A}=0.3 \overline{12}, \mathrm{~B}=0.4 \overline{15}$ and $\mathrm{C}=0.30 \overline{9}$, then what is the value of $A + B + C$?
Option 1: $\frac{1141}{1100}$
Option 2: $\frac{1097}{1100}$
Option 3: $\frac{1211}{1100}$
Option 4: $\frac{1043}{1100}$
Correct Answer: $\frac{1141}{1100}$
Solution :
Given: $\mathrm{A}=0.3 \overline{12}, \mathrm{~B}=0.4 \overline{15}$ and $\mathrm{C}=0.30 \overline{9}$.
Let $xyz$ be a three-digit number after the decimal.
Then, if the first two digits of the calculation have a bar i.e. $0.x\overline{yz}=\frac{xyz–x}{990}$.
Also, if there is a bar on just one digit i.e. $0.xy\overline{z}=\frac{xyz–xy}{900}$.
$\mathrm{A}=0.3 \overline{12}$
⇒ $A=\frac{312–3}{990}=\frac{309}{990}$
$\mathrm{~B}=0.4 \overline{15}$
⇒ $B=\frac{415–4}{990}=\frac{411}{990}$
$\mathrm{C}=0.30 \overline{9}$
⇒ $C=\frac{309–30}{900}=\frac{279}{900}$
The value of $A + B + C=\frac{309}{990}+\frac{411}{990}+\frac{279}{900}$.
$=\frac{720}{990}+\frac{279}{900}=\frac{7200+3069}{9900}=\frac{10269}{9900}=\frac{1141}{1100}$
Hence, the correct answer is $\frac{1141}{1100}$.
Related Questions
Know More about
Staff Selection Commission Combined Grad ...
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Get Updates BrochureYour Staff Selection Commission Combined Graduate Level Exam brochure has been successfully mailed to your registered email id “”.