Question : If the sum of the diagonals of a rhombus is $L$ and the perimeter is $4P$, find the area of the rhombus.
Option 1: $\frac{1}{4}\left(\mathrm{~L}^2-\mathrm{P}^2\right)$
Option 2: $\frac{1}{2}\left(\mathrm{~L}^2-4 \mathrm{P}^2\right)$
Option 3: $\frac{1}{4}\left(\mathrm{~L}^2+3 \mathrm{P}^2\right)$
Option 4: $\frac{1}{4}\left(\mathrm{~L}^2-4 \mathrm{P}^2\right)$
Correct Answer: $\frac{1}{4}\left(\mathrm{~L}^2-4 \mathrm{P}^2\right)$
 
  Solution :
 
 Perimeter = $4P$
 
  ⇒ 4 × side = $4P$
  
  ⇒ Side = $P$
  
  Let $d_1$ and $d_2$ be the diagonals.
  
  The sum of the diagonals = $L$
  
  ⇒ $d_1+d_2$ = L ----------------------(i)
  
  Now, (Side)$^2$ = $(\frac{d_1}{2})^2 + (\frac{d_2}{2})^2$
  
  ⇒ $P^2 = (\frac{d_1}{2})^2 + (\frac{d_2}{2})^2$
  
  ⇒ $d_1^2+d_2^2 = 4P^2$
  
  ⇒ $(d_1+d_2)^2-2d_1d_2 = 4P^2$
  
  ⇒ $L^2-2d_1d_2 = 4P^2$
  
  ⇒ $d_1d_2 = \frac{L^2-4P^2}{2}$
  
  So, the area of the rhombus  = $\frac{1}{2}d_1d_2 = \frac{L^2-4P^2}{4}$
  
  Hence, the correct answer is $\frac{1}{4}(L^2-4P^2)$.
 
Related Questions
Know More about
Staff Selection Commission Multi Tasking ...
Application | Cutoff | Selection Process | Preparation Tips | Eligibility | Exam Pattern | Admit Card
Get Updates BrochureYour Staff Selection Commission Multi Tasking Staff Exam brochure has been successfully mailed to your registered email id “”.
 
																   
																 
								 
              
              




 
                
             
                    
                 
								 
								 
								 
								 
								