Question : If $\sin^4\theta+\cos^4\theta=2\sin^2\theta \cos^2\theta$, where $\theta$ is an acute angle, then the value of $\tan\theta$ is:
Option 1: $1$
Option 2: $2$
Option 3: $\sqrt2$
Option 4: $0$
Correct Answer: $1$
 
  Solution :
 
 Given:
 
  $\sin^4\theta+\cos^4\theta=2\sin^2\theta \cos^2\theta$ and $\theta$ is an acute angle.
  
  We know the algebraic identity, $(a-b)^2=a^2+b^2-2ab$.
  
  $\sin^4\theta+\cos^4\theta-2\sin^2\theta \cos^2\theta=0$
  
  Or, $(\sin^2\theta-\cos^2\theta)^2=0$
  
  Or, $\sin^2\theta-\cos^2\theta=0$
  
  Or, $\sin^2\theta=\cos^2\theta$
  
  Or, $\tan^2\theta=1$
  
  $\therefore \tan \theta=\pm 1$
  
  Since, $\theta$ is an acute angle, then the value of $\tan\theta$ is $1$.
  
  Hence, the correct answer is $1$.
 
Related Questions
Know More about
Staff Selection Commission Sub Inspector ...
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Get Updates BrochureYour Staff Selection Commission Sub Inspector Exam brochure has been successfully mailed to your registered email id “”.
								
              
              



