Question : What is the LCM of $a^3b-ab^3,a^3b^2-a^2b^3, ab(a-b)$?
Option 1: $a^2 b^2\left(a^2+b^2\right)$
Option 2: $a^2 b^2\left(a^2-b^2\right)$
Option 3: $a^2 b^3\left(a^2+b^2\right)$
Option 4: $a^3 b^2\left(a^2-b^2\right)$
Correct Answer: $a^2 b^2\left(a^2-b^2\right)$
Solution :
To find the LCM of the given expressions, we first factorize them:
1. $a^3b-ab^3 = ab(a^2-b^2) = ab(a-b)(a+b)$
2. $a^3b^2-a^2b^3 = a^2b^2(a-b)$
3. $ab(a-b)$
Now, the LCM of these expressions is the product of the highest powers of all factors present in any of the expressions.
$\therefore$ LCM $=a^2b^2(a-b)(a+b)=a^2b^2(a^2-b^2)$
Hence, the correct answer is $a^2b^2(a^2-b^2)$.
Related Questions
Know More about
Staff Selection Commission Sub Inspector ...
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Get Updates BrochureYour Staff Selection Commission Sub Inspector Exam brochure has been successfully mailed to your registered email id “”.




