Question : What is the value of $3 \sin ^2 30^{\circ}+\frac{3}{5} \cos ^2 60^{\circ}–2 \sec ^2 45^{\circ} $?
Option 1: $-\frac{5}{2}$
Option 2: $-\frac{5}{8}$
Option 3: $-\frac{31}{10}$
Option 4: $-\frac{25}{17}$
Correct Answer: $-\frac{31}{10}$
 
  Solution :
 
 Given: The trigonometric expression is $3 \sin ^2 30^{\circ}+\frac{3}{5} \cos ^2 60^{\circ}–2 \sec ^2 45^{\circ} $.
 
  We know the values of trigonometric ratios, $\sin 30^{\circ} =\frac{1}{2}$, $\cos 60^{\circ}=\frac{1}{2}$ and $\sec 45^{\circ}=\sqrt2$.
  
  ⇒ $3 \sin ^2 30^{\circ}+\frac{3}{5} \cos ^2 60^{\circ}–2 \sec ^2 45^{\circ}$
  
  $= 3\times(\frac{1}{2})^2+\frac{3}{5}\times(\frac{1}{2})^2–2 \times (\sqrt2)^2 $
  
  $= \frac{3}{4}+\frac{3}{20}-4=\frac{15+3-80}{20}$
  
  $= \frac{18-80}{20}=-\frac{62}{20}=-\frac{31}{10}$
  
  Hence, the correct answer is $-\frac{31}{10}$.
 
Related Questions
Know More about
Staff Selection Commission Combined Grad ...
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Get Updates BrochureYour Staff Selection Commission Combined Graduate Level Exam brochure has been successfully mailed to your registered email id “”.
								
              
              



