Question : $2(\sin 1^{\circ}× \sec 89^{\circ} ) + 3 (\cos 11^{\circ} × \operatorname{cosec} 79^{\circ}) + 5 (\tan 21^{\circ} × \tan 69^{\circ})$ = ?
Option 1: 11
Option 2: 12
Option 3: 20
Option 4: 10
Correct Answer: 10
Solution : $2(\sin 1^{\circ}× \sec 89^{\circ} ) + 3 (\cos 11^{\circ} × \operatorname{cosec} 79^{\circ}) + 5 (\tan 21^{\circ} × \tan 69^{\circ})$ = $2(\frac{\sin 1^{\circ}}{ \cos 89^{\circ}} ) + 3 (\frac{\cos 11^{\circ}}{ \sin 79^{\circ}}) + 5 (\frac{\tan 21^{\circ} }{\cot 69^{\circ}})$ = $2(\frac{\sin 1^{\circ}}{ \sin(90^{\circ}- 89^{\circ})} ) + 3 (\frac{\cos 11^{\circ}}{ \cos (90^{\circ}-79^{\circ})}) + 5 (\frac{\tan 21^{\circ} }{\tan (90^{\circ}-69^{\circ})})$ = $2(\frac{\sin 1^{\circ}}{ \sin 1^{\circ}} ) + 3 (\frac{\cos 11^{\circ}}{\cos 11^{\circ}}) + 5 (\frac{\tan 21^{\circ} }{\tan 21^{\circ}})$ = $ 2 + 3 + 5$ = $10$ Hence, the correct answer is 10.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : The value of $\frac{\sin ^2 30^{\circ}+\cos ^2 60^{\circ}-\sec 35^{\circ} \cdot \sin 55^{\circ}}{\sec 60^{\circ}+\operatorname{cosec} 30^{\circ}}$ is equal to:
Option 1: $\frac{1}{8}$
Option 2: $-\frac{1}{4}$
Option 3: $\frac{1}{4}$
Option 4: $-\frac{1}{8}$
Question : Evaluate $\frac{\sin 54^{\circ}}{\cos 36^{\circ}}+\frac{\sec 46^{\circ}}{\operatorname{cosec} 44^{\circ}}$
Option 1: 0
Option 2: –1
Option 3: 2
Option 4: 1
Question : The value of $\sqrt{\frac{1+\sin A}{1-\sin A}}$ is:
Option 1: $\sec A-\tan A$
Option 2: $\operatorname{cosec} A+\cot A$
Option 3: $\sec A+\tan A$
Option 4: $\operatorname{cosec} A-\cot A$
Question : The value of $\frac{\sin ^2 30^{\circ}+\cos ^2 60^{\circ}+\sec 45^{\circ} × \sin 45^{\circ}}{\sec 60^{\circ}+{\text{cosec}} 30^{\circ}}$ is:
Option 1: $\frac{1}{4}$
Option 2: $-\frac{3}{8}$
Option 3: $\frac{3}{8}$
Option 4: $-\frac{1}{4}$
Question : Which of the following is the value of $\sqrt{\frac{1-\sin 45^{\circ}}{1+\sin 45^{\circ}}}$?
Option 1: $\cos 45^{\circ} - \tan 45^{\circ}$
Option 2: $\tan 45^{\circ} - \sec 45^{\circ}$
Option 3: $\tan 45^{\circ}$
Option 4: $\sec 45^{\circ} - \tan 45^{\circ}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile