20 Views

Question : ABC is an isosceles right-angled triangle with $\angle$B = 90°. On the sides AC and AB, two equilateral triangles ACD and ABE have been constructed. The ratio of the area of $\triangle$ABE and $\triangle$ACD is:

Option 1: $1 : 3$

Option 2: $2 : 3$

Option 3: $1 : 2$

Option 4: $1 : \sqrt{2}$


Team Careers360 10th Jan, 2024
Answer (1)
Team Careers360 11th Jan, 2024

Correct Answer: $1 : 2$


Solution :
Given:
$\angle$ABC = 90°, AB = BC
In $\triangle$ABC, AC2 = AB2 + BC2 = AB2 + AB2 = 2AB2
Since, $\triangle$ACD $\sim$ $\triangle$ABE,
$\frac{\text{area of} \triangle ABE}{\text{area of} \triangle ACD}=\frac{AB^2}{AC^2}$
⇒ $\frac{\text{area of} \triangle ABE}{\text{area of} \triangle ACD}=\frac{AB^2}{2AB^2}$
$\therefore \frac{\text{area of} \triangle ABE}{\text{area of} \triangle ACD}=\frac{1}{2}$
Hence, the correct answer is $1 : 2$.

How to crack SSC CHSL

Candidates can download this e-book to give a boost to thier preparation.

Download Now

Know More About

Related Questions

Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books