10 Views

Question : An example of an equality relation of two expressions in $x$. Which is not an identity, is:

Option 1: $(x+3)^{2}=x^{2}+6x+9$

Option 2: $(x+2y)^{3}=x^{3}+8y^{3}+6xy(x+2y)$

Option 3: $(x+2)^{2}=x^{2}+2x+4$

Option 4: $(x+3)(x–3)=x^{2}–9$


Team Careers360 1st Jan, 2024
Answer (1)
Team Careers360 7th Jan, 2024

Correct Answer: $(x+2)^{2}=x^{2}+2x+4$


Solution : Given: $(x+3)^{2}=x^{2}+6x+9$
⇒ $(x^{2}+9+6x)=x^{2}+6x+9$
Similarly, $(x+2y)^{3}=x^{3}+8y^{3}+6xy(x+2y)$
⇒ $x^{3}+8y^{3}+6xy(x+2y)=x^{3}+8y^{3}+6xy(x+2y)$
Similarly, $(x+3)(x–3)=x^{2}-9$
Similarly, $(x+2)^{2}=x^{2}+2x+4$
⇒ $(x^{2}+4+4x)=x^{2}+2x+4$
We can see this is not an identity.
Hence, the correct answer is '$(x+2)^{2}=x^{2}+2x+4$'.

Know More About

Related Questions

TOEFL ® Registrations 2025
Apply
Accepted by 13,000 universities worldwide | Offered in 200+ countries | 40 million people have taken TOEFL Test
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Upcoming Exams

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books