Question : Each interior angle of a regular polygon is $18^{\circ}$ more than eight times an exterior angle. The number of sides of the polygon is:
Option 1: 10
Option 2: 15
Option 3: 20
Option 4: 25
Correct Answer: 20
Solution : The sum of the exterior angles of a polygon = $360^{\circ}$ Let the number of sides of the regular polygon be $n$. Each exterior angle = $\frac{360^\circ}{n}$ Each interior angle = $\frac{(n-2)\times 180^\circ}{n}$ According to the question, $\frac{360^\circ}{n}\times 8 + 18^\circ=\frac{(n-2)\times 180^\circ}{n}$ ⇒ $2880 + 18n =180n-360$ ⇒ $n=\frac{3240}{162}=20$ Number of sides of regular polygon = 20 Hence, the correct answer is 20.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : Chords AC and BD of a circle with centre O, intersect at right angles at E. If $\angle OAB=25^{\circ}$, then the value of $\angle EBC$ is:
Option 1: $30^{\circ}$
Option 2: $25^{\circ}$
Option 3: $20^{\circ}$
Option 4: $15^{\circ}$
Question : A polygon has 54 diagonals. The number of sides in the polygon is:
Option 1: 7
Option 2: 9
Option 3: 12
Option 4: 15
Question : $2(\sin 1^{\circ}× \sec 89^{\circ} ) + 3 (\cos 11^{\circ} × \operatorname{cosec} 79^{\circ}) + 5 (\tan 21^{\circ} × \tan 69^{\circ})$ = ?
Option 1: 11
Option 2: 12
Option 4: 10
Question : PQR is a triangle. The bisectors of the internal angle $\angle Q$ and external angle $\angle R$ intersect at S. If $\angle QSR=40^{\circ}$, then $\angle P$ is:
Option 1: $40^{\circ}$
Option 2: $60^{\circ}$
Option 3: $80^{\circ}$
Option 4: $30^{\circ}$
Question : In $\Delta PQR,$ $\angle P : \angle Q : \angle R = 1: 3 : 5$, what is the value of $\angle R - \angle P$?
Option 1: $30^\circ$
Option 2: $80^\circ$
Option 3: $45^\circ$
Option 4: $60^\circ$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile