Question : Evaluate the following: $\cos \left(36^{\circ}+A\right) \cdot \cos \left(36^{\circ}-A\right)+\cos \left(54^{\circ}+A\right) \cdot \cos \left(54^{\circ}-A\right)$
Option 1: $\sin 2A$
Option 2: $\cos A$
Option 3: $\sin A$
Option 4: $\cos 2A$
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\cos 2A$
Solution : $\cos (36^{\circ}+A). \cos (36^{\circ}-A)+\cos (54^{\circ}+A) .\cos (54^{\circ}-A)$ = $\cos (36^{\circ}+A) . \cos (36^{\circ}-A)+\sin [90^{\circ}-(54^{\circ}+A)] . \sin [90^{\circ}-(54^{\circ}-A )]$ = $\cos (36^{\circ}+A) \cdot \cos (36^{\circ}-A)+\sin (36^{\circ}-A) \cdot \sin (36^{\circ}+A)$ = $\cos (36^{\circ}+A-36^{\circ}+A )$ [$\because \cos(A- B) =\sin A.\sin B +\cos A. \cos B$] = $\cos 2A$ Hence, the correct answer is $\cos 2A$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : Evaluate the following. $\sin 25^{\circ} \sin 65^{\circ}-\cos 25^{\circ} \cos 65^{\circ}$.
Option 1: 40
Option 2: 4
Option 3: 0
Option 4: 1
Question : Solve the following to find its value in terms of trigonometric ratios. $(\sin A + \cos A)(1 - \sin A \cos A)$
Option 1: $\sin^3A+\cos^3A$
Option 2: $\sin^2A-\cos^2A$
Option 3: ${[\cos A-\sin A]\left[\sin ^2 A+\cos ^2 A\right]}$
Option 4: $\sin^3A-\cos^3A$
Question : The value of $\left(\sin 30^{\circ} \cos 60^{\circ}-\cos 30^{\circ} \sin 60^{\circ}\right)$ is equal to:
Option 1: $-\cos 30^{\circ}$
Option 2: $-\sin 30^{\circ}$
Option 3: $\cos 30^{\circ}$
Option 4: $\sin 30^{\circ}$
Question : If $\left(\frac{\cos A}{1-\sin A}\right)+\left(\frac{\cos A}{1+\sin A}\right)=4$, then what will be the value of $A$? $\left(0^{\circ}<\theta<90^{\circ}\right)$
Option 1: $90^{\circ}$
Option 2: $45^{\circ}$
Option 3: $60^{\circ}$
Option 4: $30^{\circ}$
Question : Evaluate the expression: $\frac{\sin ^2 63^{\circ}+\sin ^2 27^{\circ}}{\cos ^2 17^{\circ}+\cos ^2 73^{\circ}}$
Option 1: 0
Option 2: 3
Option 3: 1
Option 4: 2
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile