Question : Evaluate the given expression: $\cos ^2 36^{\circ}+\cos 54^{\circ} \cdot \sin 36^{\circ}+\left(\frac{\tan 26^{\circ}}{\cot 64^{\circ}}\right)$
Option 1: 4
Option 2: 3
Option 3: 1
Option 4: 2
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 2
Solution : Given, $\cos ^2 36°+\cos 54° \cdot \sin 36°+\left(\frac{\tan 26°}{\cot 64°}\right)$ = $\cos^2 36°+\cos(90°-36°)\cdot\sin36°+\frac{\tan 26°}{\cot(90°-26°)}$ = $\cos^2 36° + \sin 36°\cdot \sin 36° + \frac{\tan 26°}{\tan 26°}$ = $1+1$ [$\because \sin^2x+\cos^2x = 1$] = $2$ Hence, the correct answer is 2.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : The value of the expression $\left[\operatorname{cot} 1^{\circ} \cdot \operatorname{cot} 2^{\circ} \cdot \operatorname{cot} 3^{\circ} \cdot \operatorname{cot} 4^{\circ} \cdot \operatorname{cot} 5^{\circ} \ldots . \operatorname{cot} 178^{\circ} \cdot \operatorname{cot} 179^{\circ}\right]$ is:
Option 1: $1235$
Option 2: $\frac{1}{2}$
Option 3: $1$
Option 4: $0$
Question : Simplify the given equation: $(1+\tan ^2 A)(1+\cot ^2 A)=?$
Option 1: $\frac{1}{\cos ^2 A\left(1+\sin ^2 A\right)}$
Option 2: $\frac{1}{\sin ^2 A\left(1-\sin ^2 A\right)}$
Option 3: $\frac{1}{\sin ^2 A+\operatorname{cosec}^2 A}$
Option 4: $\frac{1}{\sin ^2 A\left(1+\cos ^2 A\right)}$
Question : Simplify the given expression: $\frac{\sin^2 32^{\circ}+\sin^2 58^{\circ}}{\cos^2 32^{\circ}+\cos^2 58^{\circ}}+\sin^2 53^{\circ}+\cos 53^{\circ} \sin 37^{\circ}$
Option 1: 2
Option 2: –1
Option 3: –2
Option 4: 1
Question : If $\sin\phi=\frac{5}{6}$, the value of $\cot\phi \cdot \sin\phi \cdot \cos\phi$ is:
Option 1: $\frac{6}{5}$
Option 2: $\frac{25}{36}$
Option 3: $\frac{5}{6}$
Option 4: $\frac{11}{36}$
Question : What is the value of $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}+\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}$?
Option 1: $\frac{1}{\left(\sin ^2 \theta-\cos ^2 \theta\right)}$
Option 2: $2\left(\sin ^2 \theta-\cos ^2 \theta\right)$
Option 3: $\frac{2}{\left(\sin ^2 \theta-\cos ^2 \theta\right)}$
Option 4: $\sin ^2 \theta-\cos ^2 \theta$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile