15 Views

Question : Find the value of $\frac{\cos 37^{\circ}}{\sin 53^{\circ}}-\cos 47^{\circ} \operatorname{cosec} 43^{\circ}$.

Option 1: 0

Option 2: –1

Option 3: 2

Option 4: 1


Team Careers360 15th Jan, 2024
Answer (1)
Team Careers360 18th Jan, 2024

Correct Answer: 0


Solution : $\frac{\cos 37^{\circ}}{\sin 53^{\circ}}-\cos 47^{\circ} \operatorname{cosec} 43^{\circ}$
= $\frac{\cos (90-53)^{\circ}}{\sin 53^{\circ}}-\cos (90-43)^{\circ} \operatorname{cosec} 43^{\circ}$ [$\sin \theta = \cos(90^\circ - \theta)$]
= $\frac{\sin 53^{\circ}}{\sin 53^{\circ}}-\sin 43^{\circ} \operatorname{cosec} 43^{\circ}$
= 1 – 1 [$\because \sin \theta = \frac{1}{\operatorname{cosec} \theta}$]
= 0
Hence, the correct answer is 0.

Know More About

Related Questions

Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Upcoming Exams

Application Date: 16 Dec, 2025 - 16 Jan, 2026
Tier II Exam Date: 18 Jan, 2026 - 19 Jan, 2026
Admit Card Date: 27 Dec, 2025 - 20 Jan, 2026
Application Date: 10 Jan, 2026 - 9 Feb, 2026

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books