Question : Find the volume of a sphere having a diameter of 6 mm, in terms of $\pi$.
Option 1: $12 \pi ~\mathrm{mm}^3$
Option 2: $24 \pi ~\mathrm{mm}^3$
Option 3: $64 \pi~ \mathrm{mm}^3$
Option 4: $36 \pi ~\mathrm{mm}^3$
New: SSC MTS Tier 1 Answer key 2024 out
Don't Miss: Month-wise Current Affairs | Upcoming Government Exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $36 \pi ~\mathrm{mm}^3$
Solution : Given, Diameter = $6~\mathrm{mm}$ ⇒ Radius = $\frac62$ = $3~\mathrm{mm}$ Volume of a sphere = $\frac43\pi r^3$, where $r$ is the radius of the sphere ⇒ Volume = $\frac43\pi \times3^3$ = $4\pi\times3\times3$ = $36 \pi ~\mathrm{mm}^3$ Hence, the correct answer is $36 \pi ~\mathrm{mm}^3$.
Application | Cutoff | Selection Process | Preparation Tips | Eligibility | Exam Pattern | Admit Card
Question : The height of a right circular cone is 24 cm. If the diameter of its base is 36 cm, then what will be the curved surface area of the cone?
Option 1: $1444.6 \; \mathrm{cm^2}$
Option 2: $2400.9\; \mathrm{cm^2}$
Option 3: $1697.14 \; \mathrm{cm^2}$
Option 4: $2144.2\; \mathrm{cm^2}$
Question : The side of a square is equal to 40% of the radius of a sphere. If the volume of the sphere is $\frac{500 \pi}{3} \mathrm{~m}^3$, then what is the area of the square?
Option 1: 2 m2
Option 2: 1 m2
Option 3: 9 m2
Option 4: 4 m2
Question : The volume of a hemisphere is $486 \pi\ \mathrm{cm}^3$. Find the radius.
Option 1: 7 cm
Option 2: 9 cm
Option 3: 4 cm
Option 4: 8 cm
Question : The longest side of the obtuse triangle is 7 cm and the other two sides of the triangle are 4 cm and 5 cm. Find the area of the triangle.
Option 1: $1 \sqrt{3} \mathrm{~cm}^2$
Option 2: $6 \sqrt{3} \mathrm{~cm}^2$
Option 3: $3 \sqrt{2} \mathrm{~cm}^2$
Option 4: $4 \sqrt{6} \mathrm{~cm}^2$
Question : If the sum of the diagonals of a rhombus is $L$ and the perimeter is $4P$, find the area of the rhombus.
Option 1: $\frac{1}{4}\left(\mathrm{~L}^2-\mathrm{P}^2\right)$
Option 2: $\frac{1}{2}\left(\mathrm{~L}^2-4 \mathrm{P}^2\right)$
Option 3: $\frac{1}{4}\left(\mathrm{~L}^2+3 \mathrm{P}^2\right)$
Option 4: $\frac{1}{4}\left(\mathrm{~L}^2-4 \mathrm{P}^2\right)$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile