Question : If A is an acute angle, the simplified form of $\frac{\cos (\pi-A) \cdot \cot \left(\frac{\pi}{2}+A\right) \cos (-A)}{\tan (\pi+A) \tan \left(\frac{3 \pi}{2}+A\right) \sin (2 \pi-A)}$ is:
Option 1: $ \cos^2 A$
Option 2: $\sin A$
Option 3: $\sin^2 A$
Option 4: $\cos A$
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\cos A$
Solution : $\frac{\cos (\pi-A) \cdot \cot \left(\frac{\pi}{2}+A\right) \cos (-A)}{\tan (\pi+A) \tan \left(\frac{3 \pi}{2}+A\right) \sin (2 \pi-A)}$ $=\frac{-\cos A \ \cdot (-\tan A) \ \cdot \cos A}{\tan A \ \cdot (-\cot A) (-\sin A)}$ $= \frac{\cos^2 A \ \cdot \tan A}{\sin A}$ $= \frac{\cos^2 A \ \cdot \frac{\sin A}{\cos A}}{\sin A}$ $= \cos A$ Hence, the correct answer is $\cos A$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : $\frac{\cos A}{1-\tan A}+\frac{\sin A}{1-\cot A}=$___________.
Option 1: $\tan A - \cot A$
Option 2: $\tan A + \cot A$
Option 3: $\sin A - \cos A$
Option 4: $\sin A + \cos A$
Question : Simplify the following: $\frac{\cos x-\sqrt{3} \sin x}{2}$
Option 1: $\cos \left(\frac{\pi}{3}-x\right)$
Option 2: $\sin \left(\frac{\pi}{3}+x\right)$
Option 3: $\cos \left(\frac{\pi}{3}+x\right)$
Option 4: $\sin \left(\frac{\pi}{3}-x\right)$
Question : Simplify: $\frac{\cos A}{1+\tan A}-\frac{\sin A}{1+\cot A}$
Option 1: $\tan A$
Option 2: $\cos A-\sin A$
Option 3: $\cos A \sin A$
Option 4: $\cos A+\sin A$
Question : Evaluate the following: $\cos \left(36^{\circ}+A\right) \cdot \cos \left(36^{\circ}-A\right)+\cos \left(54^{\circ}+A\right) \cdot \cos \left(54^{\circ}-A\right)$
Option 1: $\sin 2A$
Option 2: $\cos A$
Option 3: $\sin A$
Option 4: $\cos 2A$
Question : $\frac{1+\sin \theta}{\cos \theta}$ is equal to which of the following (where $\left.\theta \neq \frac{\pi}{2}\right)?$
Option 1: $\frac{1+\cos \theta}{\sin \theta}$
Option 2: $\frac{\tan \theta+1}{\tan \theta-1}$
Option 3: $\frac{\tan \theta-1}{\tan \theta+1}$
Option 4: $\frac{\cos \theta}{1-\sin \theta}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile