40 Views
Question : If $(a^3+b^3+c^3-3 a b c)=405$ and $(a-b)^2+(b-c)^2+(c-a)^2=54$, find the value of $(a + b + c)$.
Option 1: 15
Option 2: 45
Option 3: 9
Option 4: 27
Answer (1)
Correct Answer: 15
Solution : $(a-b)^2+(b-c)^2+(c-a)^2=54$
⇒ $2(a^2+b^2+c^2-ab-bc-ac)=54$
⇒ $(a^2+b^2+c^2-ab-bc-ac)=27$
Also, we know that $(a^3+b^3+c^3-3 a b c) = (a+b+c)(a^2+b^2+c^2-ab-bc-ac)$ Substituting the values,
⇒ $405 = 27×(a+b+c)$
⇒ $a+b+c = 15$
Hence, the correct answer is 15.
SSC CGL Complete Guide
Candidates can download this ebook to know all about SSC CGL.
Download EBookKnow More About
Related Questions
Upcoming Exams
Mains Exam
Application Date:
14 Aug, 2025
- 12 Sep, 2025
Preliminary Exam
Exam Date:
23 Aug, 2025
- 24 Aug, 2025