Question : If $\left(y^2+\frac{1}{y^2}\right)=167$ and $y>0$, find the value of $\left(y+\frac{1}{y}\right)$.
Option 1: 13
Option 2: $-\sqrt{165}$
Option 3: $\sqrt{165}$
Option 4: –13
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 13
Solution : Given, $\left(y^2+\frac{1}{y^2}\right)=167$ Adding 2 on both sides, we get ⇒ $y^2+\frac{1}{y^2}+2=167+2$ ⇒ $y^2+\frac{1}{y^2}+2\times y\times\frac{1}{y}=169$ ⇒ $(y+\frac{1}{y})^2=169$ ⇒ $y+\frac{1}{y}=\sqrt{169}$ ⇒ $y+\frac{1}{y}=13$ [As $y>0$] Hence, the correct answer is 13.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : If $\left(y^2+\frac{1}{y^2}\right)=74$ and $y>1$, then find the value of $\left(y-\frac{1}{y}\right)$.
Option 1: $6 \sqrt{2}$
Option 2: $-2 \sqrt{19}$
Option 3: $2 \sqrt{19}$
Option 4: $-6 \sqrt{2}$
Question : If $x^3=270+y^3$ and $x=(6+y)$, then what is the value of $(x+y)? $(given that $x>0$ and $y>0$)
Option 1: $2 \sqrt{3}$
Option 2: $\sqrt{3}$
Option 3: $4 \sqrt{3}$
Option 4: $4 \sqrt{2}$
Question : If $a+b :\sqrt{ab} = 4:1 $ where $ a > b > 0$, then $ a:b$ is:
Option 1: $\left (2+\sqrt{3} \right):\left (2-\sqrt{3} \right)$
Option 2: $\left (2-\sqrt{3} \right):\left (2+\sqrt{3} \right)$
Option 3: $\left (3+\sqrt{2} \right):\left (3-\sqrt{2} \right)$
Option 4: $\left (3-\sqrt{2} \right):\left (3+\sqrt{2} \right)$
Question : If $\left(3 y+\frac{3}{y}\right)=8$, then find the value of $\left(y^2+\frac{1}{y^2}\right)$.
Option 1: $5\frac{1}{9}$
Option 2: $4\frac{5}{6}$
Option 3: $7\frac{1}{9}$
Option 4: $9\frac{1}{9}$
Question : If $a=\frac{1}{a-\sqrt{6}}$ and $(a>0)$, then the value of $\left(a+\frac{1}{a}\right)$ is:
Option 1: $\sqrt{6}$
Option 2: $\sqrt{10}$
Option 3: $\sqrt{15}$
Option 4: $\sqrt{7}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile