Question : If $a + b + c = 0$ and $ab + bc + ca = -11$, then what is the value of $a^2+b^2+c^2$?
Option 1: –11
Option 2: 22
Option 3: 0
Option 4: 11
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 22
Solution : Given: $a + b + c = 0$ and $ab + bc + ca = -11$ We know, $(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)$ $⇒0^2 = a^2 + b^2 + c^2 + 2(-11)$ $\therefore a^2 + b^2 + c^2 = 22$ Hence, the correct answer is 22.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : If a + b + c = 1, ab + bc + ca = –1, and abc = –1, then what is the value of a3 + b3 + c3?
Option 1: 1
Option 2: 5
Option 3: 3
Option 4: 2
Question : If a + b + c = 0, then the value of (a + b – c)2 + ( b + c – a)2 + ( c + a – b)2 is:
Option 1: 0
Option 2: 8abc
Option 3: 4(a2 + b2 + c2)
Option 4: 4(ab + bc + ca)
Question : For real $a, b, c$ if $a^2+b^2+c^2=ab+bc+ca$, then value of $\frac{a+c}{b}$ is:
Option 2: 2
Option 4: 0
Question : If $a + b + c = 12$ and $ab + bc + ca = 22$, then what is the value of $a^3 + b^3 + c^3 - 3abc ?$
Option 1: 1052
Option 2: 936
Option 3: 924
Option 4: 876
Question : If $a+b+c=0$ and $a^2+b^2+c^2=40$, then what is the value of $a b+b c+c a$?
Option 1: –30
Option 2: –20
Option 3: –25
Option 4: –40
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile