Question : If $\cot A=\frac{5}{12}$, find the value of the following expression: $\frac{5\left(1-\cos^2 A\right)}{6\left(1-\sin^2 A\right)}$
Option 1: $\frac{144}{5}$
Option 2: $\frac{24}{25}$
Option 3: $\frac{144}{25}$
Option 4: $\frac{24}{5}$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{24}{5}$
Solution : Given: $\cot A=\frac{5}{12}⇒ \cot^2A = \frac{25}{144}$ Using identity: $\cos^2A+\sin^2A=1$ $\frac{5(1-\cos^2A)}{6(1-\sin^2A)}$ = $\frac{5\sin^2A}{6\cos^2A}$ = $\frac{5}6\times \tan^2A $ = $\frac{5}6\times\frac{1}{\cot^2A} $ = $\frac{5}6\times \frac{144}{ 25}$ = $\frac{24}5$ Hence, the correct answer is $\frac{24}{5}$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : If $\sin\phi=\frac{5}{6}$, the value of $\cot\phi \cdot \sin\phi \cdot \cos\phi$ is:
Option 1: $\frac{6}{5}$
Option 2: $\frac{25}{36}$
Option 3: $\frac{5}{6}$
Option 4: $\frac{11}{36}$
Question : Simplify the given equation: $(1+\tan ^2 A)(1+\cot ^2 A)=?$
Option 1: $\frac{1}{\cos ^2 A\left(1+\sin ^2 A\right)}$
Option 2: $\frac{1}{\sin ^2 A\left(1-\sin ^2 A\right)}$
Option 3: $\frac{1}{\sin ^2 A+\operatorname{cosec}^2 A}$
Option 4: $\frac{1}{\sin ^2 A\left(1+\cos ^2 A\right)}$
Question : What is the value of $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}+\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}$?
Option 1: $\frac{1}{\left(\sin ^2 \theta-\cos ^2 \theta\right)}$
Option 2: $2\left(\sin ^2 \theta-\cos ^2 \theta\right)$
Option 3: $\frac{2}{\left(\sin ^2 \theta-\cos ^2 \theta\right)}$
Option 4: $\sin ^2 \theta-\cos ^2 \theta$
Question : If $\operatorname{cosec} A+\cot A=a \sqrt{b}$, then find the value of $\frac{\left(a^2 b-1\right)}{\left(a^2 b+1\right)}$.
Option 1: $\cos A$
Option 2: $\tan A$
Option 3: $\frac{1}{\sin A}$
Option 4: $\frac{1}{\cot A}$
Question : If $\sin A+\sin ^2 A=1$, then the value of the expression $\left(\cos ^2 A+\cos ^4 A\right)$ is
Option 1: $\frac{3}{2}$
Option 2: $1$
Option 3: $2$
Option 4: $\frac{1}{2}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile