14 Views

Question : If in a $\triangle$ABC, D and E are on the sides AB and AC, such that, DE is parallel to BC and $\frac{AD}{BD}$ = $\frac{3}{5}$. If AC = 4 cm, then AE is:

Option 1: 1.5 cm

Option 2: 2.0 cm

Option 3: 1.8 cm

Option 4: 2.4 cm


Team Careers360 12th Jan, 2024
Answer (1)
Team Careers360 15th Jan, 2024

Correct Answer: 1.5 cm


Solution :
Given: $\frac{AD}{BD}$ = $\frac{3}{5}$
In $\triangle$ABC and $\triangle$DBE,
$\angle$BAC = $\angle$DAE (same angle)
$\angle$ADE = $\angle$ABC (corresponding angles)
$\angle$AED = $\angle$ACB (corresponding angles)
By AAA similarity, $\triangle$ABC ~ $\triangle$ADE
⇒ $\frac{AD}{AB}$ = $\frac{AD}{AD+BD}$ = $\frac{3}{3+5}$ = $\frac{3}{8}$
Now, $\frac{AD}{AB}$ = $\frac{AE}{AC}$
⇒ $\frac{3}{8}$ = $\frac{AE}{4}$ [since AC = 4 cm]
⇒ AE = $\frac{3×4}{8}$ = 1.5 cm
Hence, the correct answer is 1.5 cm.

How to crack SSC CHSL

Candidates can download this e-book to give a boost to thier preparation.

Download Now

Know More About

Related Questions

Amity Online MBA
Apply
Apply for an Online MBA from Amity Online.
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books