14 Views

Question : If $\triangle \mathrm{ABC}$ is similar to $\triangle \mathrm{DEF}$ such that $\mathrm{BC}=3 \mathrm{~cm}, \mathrm{EF}=4 \mathrm{~cm}$ and the area of $\triangle \mathrm{ABC}=54 \mathrm{~cm}^2$, then the area of $\triangle \mathrm{DEF}$ is:

Option 1: 78 cm2

Option 2: 96 cm2

Option 3: 66 cm2

Option 4: 44 cm2


Team Careers360 17th Jan, 2024
Answer (1)
Team Careers360 21st Jan, 2024

Correct Answer: 96 cm2


Solution : Given,
$\triangle \mathrm{ABC}\sim \triangle \mathrm{DEF}$
$\mathrm{BC}=3 \mathrm{~cm}, \mathrm{EF}=4 \mathrm{~cm}$ and the area of $\triangle \mathrm{ABC}=54 \mathrm{~cm}^2$
⇒ $\frac{area(\triangle{ABC})}{area(\triangle{DEF})}=\frac{BC^2}{EF^2}$
⇒ $\frac{54}{area(\triangle{DEF})}=\frac{3^2}{4^2}$
⇒ $\frac{54}{area(\triangle{DEF})}=\frac{9}{16}$
⇒ $area(\triangle{DEF})=\frac{54\times16}{9}$
⇒ $area(\triangle{DEF})=96$ cm$^2$
Hence, the correct answer is 96 cm$^2$

Know More About

Related Questions

Amity Online MBA
Apply
Apply for an Online MBA from Amity Online.
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books