Question : If $\cos x=-\frac{1}{2}, x$ lies in third quadrant, then $\tan x=?$
Option 1: $\sqrt{3}$
Option 2: $\frac{\sqrt{3}}{2}$
Option 3: $\frac{2}{\sqrt{3}}$
Option 4: $\frac{1}{\sqrt{3}}$
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\sqrt{3}$
Solution : Given: $\cos x=-\frac{1}{2}, x$ lies in third quadrant. $\sin^2x=1-\cos^2x=1-(-\frac{1}{2})^2=\frac{3}{4}$ ⇒ $\sin x= \pm \frac{\sqrt{3}}{2}$ As $x$ is in the 3rd quadrant therefore $\sin x=- \frac{\sqrt{3}}{2}$ $\therefore \tan x=\frac{\sin x}{\cos x}=\frac{- \frac{\sqrt{3}}{2}}{-\frac{1}{2}}=\sqrt{3}$ Hence, the correct answer is $\sqrt{3}$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $\tan \frac{A}{2}=x$, then find $x$.
Option 1: $\frac{\sqrt{1+\cos A}}{\sqrt{1-\cos A}}$
Option 2: $\frac{\sqrt{1-\sin A}}{\sqrt{1+\cos A}}$
Option 3: $\frac{\sqrt{1-\cos A}}{\sqrt{1+\cos A}}$
Option 4: $\frac{\sqrt{\cos A-1}}{\sqrt{1+\cos A}}$
Question : If $\frac{\sin ^2 \theta}{\cos ^2 \theta-3 \cos \theta+2}=1, \theta$ lies in the first quadrant, then the value of $\frac{\tan ^2 \frac{\theta}{2}+\sin ^2 \frac{\theta}{2}}{\tan \theta+\sin \theta}$ is:
Option 1: $\frac{2 \sqrt{3}}{27}$
Option 2: $\frac{5 \sqrt{3}}{27}$
Option 3: $\frac{2 \sqrt{3}}{9}$
Option 4: $\frac{7 \sqrt{3}}{54}$
Question : If $\cos \theta=\frac{\sqrt{3}}{2}$, then $\tan ^2 \theta \cos ^2 \theta=?$
Option 1: $\frac{1}{\sqrt{3}}$
Option 2: $\frac{1}{4}$
Option 3: $\frac{1}{2}$
Option 4: $\sqrt{3}$
Question : If $\tan \frac{\pi}{6}+\sec\frac{\pi}{6}=x$, then find $x$.
Option 2: $\frac{1}{\sqrt{3}}$
Option 3: $\frac{-1}{\sqrt{3}}$
Option 4: $\frac{2}{\sqrt{3}}$
Question : If $\cos27^{\circ}$ = $x$, then the value of $\tan 63°$ is:
Option 1: $\frac{x}{\sqrt{1–x^2}}$
Option 2: $\frac{x}{\sqrt{1+x^2}}$
Option 3: $\frac{\sqrt{1–x^2}}{x}$
Option 4: $\frac{\sqrt{1+x^2}}{x}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile