Question : If the perimeter of an equilateral triangle is 18 cm, then the length of each median is:
Option 1: $3\sqrt2$ cm
Option 2: $2\sqrt3$ cm
Option 3: $3\sqrt3$ cm
Option 4: $2\sqrt2$ cm
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $3\sqrt3$ cm
Solution : Let $a$ be the side of the triangle. The perimeter of an equilateral triangle = 18 cm $3a=18$ $\therefore a=\frac{18}{3}=6$ cm So, length of the median $=\frac{\sqrt3a}{2}=\frac{\sqrt3×6}{2}=3\sqrt3$ cm Hence, the correct answer is $3\sqrt3$ cm.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : The inradius of an equilateral triangle is $\sqrt3$ cm, then the perimeter of that triangle is:
Option 1: 18 cm
Option 2: 15 cm
Option 3: 12 cm
Option 4: 6 cm
Question : The median of an equilateral triangle is $6\sqrt3$ cm. The area (in cm2) of the triangle is:
Option 1: $72$
Option 2: $108$
Option 3: $72\sqrt3$
Option 4: $36\sqrt3$
Question : If the height of the equilateral triangle is $2 \sqrt 3\:\operatorname{cm}$, then determine the area of the equilateral triangle.
Option 1: $6\:\operatorname{cm^2}$
Option 2: $2\sqrt3\:\operatorname{cm^2}$
Option 3: $4\sqrt3\:\operatorname{cm^2}$
Option 4: $12\:\operatorname{cm^2}$
Question : The centroid of an equilateral triangle $ABC$ is $G$ and $AB = 10 \:\operatorname{ cm}$. The length of $AG$ is:
Option 1: $3\frac{1}{3} \:\operatorname{ cm}$
Option 2: $\frac{10}{\sqrt3} \:\operatorname{ cm}$
Option 3: $10\sqrt3 \:\operatorname{ cm}$
Option 4: $\frac{1}{\sqrt3} \:\operatorname{ cm}$
Question : In an equilateral triangle, the circumradius is 14 cm. What is the length of the median in this triangle?
Option 1: $14 \sqrt{3} \mathrm{~cm}$
Option 2: $21 \mathrm{~cm}$
Option 3: $18 \sqrt{3} \mathrm{~cm}$
Option 4: $7 \sqrt{3} \mathrm{~cm}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile