Question : If $a+\frac{1}{a}=5$, then determine the value of $a^3+\frac{1}{a^3}$.
Option 1: 90
Option 2: 125
Option 3: 105
Option 4: 110
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 110
Solution : $a+\frac{1}{a}=5$ $⇒(a+\frac{1}{a})^3=5^3$ $⇒a^3+\frac{1}{a^3}+3×a×\frac{1}{a}(a+\frac{1}{a}) = 125$ $⇒a^3+\frac{1}{a^3} = 125 - (3×5) = 125 - 15 = 110$ Hence, the correct answer is 110.
Candidates can download this e-book to give a boost to thier preparation.
Answer Key | Eligibility | Application | Admit Card | Preparation Tips | Result | Cutoff
Question : If ${P}+\frac{1}{{P}}=5$, then what is the value of ${P}^3+\frac{1}{{P}^3}$?
Option 1: 110
Option 2: 95
Option 3: 125
Option 4: 120
Question : If $x+\left [\frac{1}{(4x)} \right]=\frac{5}{2}$; then, what is the value of $\frac{64x^{6}+1}{8x^{3}} \;?$
Option 2: 115
Option 4: 140
Question : If 3 cot A = 4 and A is an acute angle, then find the value of sec A.
Option 1: $\frac{3}{4}$
Option 2: $\frac{5}{4}$
Option 3: $\frac{4}{5}$
Option 4: $\frac{5}{3}$
Question : If $x+\frac{1}{x}=3$, then the value of $\frac{3x^{2}-4x+3}{x^{2}-x+1}$ is:
Option 1: $\frac{4}{3}$
Option 2: $\frac{3}{2}$
Option 3: $\frac{5}{2}$
Question : In $\triangle$ABC, $\angle$A = $90^{\circ}$, BP and CQ are two medians. Then the value of $\frac{BP^2 + CQ^2}{BC^2}$ is:
Option 1: $\frac{4}{5}$
Option 3: $\frac{3}{4}$
Option 4: $\frac{3}{5}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile