Question : If $8 \cot A = 7$, then find $\sin A$.
Option 1: $\frac{7}{15}$
Option 2: $\frac{8}{\sqrt{113}}$
Option 3: $\frac{7}{8}$
Option 4: $\frac{8}{7}$
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{8}{\sqrt{113}}$
Solution : Given: $8 \cot A = 7$ ⇒ $\cot A = \frac{7}{8}$ We know that $\operatorname{cosec^2 A}-\cot^2A=1$ ⇒ $\operatorname{cosec^2 A}- (\frac{7}{8})^2=1$ ⇒ $\operatorname{cosec^2 A}=1+\frac{49}{64}$ ⇒ $\operatorname{cosec A}=\sqrt{\frac{113}{64}}=\frac{\sqrt{113}}{8}$ ⇒ $\sin A=\frac{8}{\sqrt{113}}$ Hence, the correct answer is $\frac{8}{\sqrt{113}}$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $\cot A=1, \sin B=\frac{1}{\sqrt{2}}$, find the value of $\sin (A+B)-\cot (A+B)$.
Option 1: $1-\sqrt{2}$
Option 2: $\frac{1}{2}$
Option 3: $0$
Option 4: $1$
Question : Find the value of $\frac{\cos^2 15^{\circ}-\sin^2 15^{\circ}}{\cos^2 145^{\circ}+\sin^2 145^{\circ}}$.
Option 1: $\frac{1}{\sqrt{3}}$
Option 2: $\frac{1}{1-\sqrt{3}}$
Option 3: $\frac{\sqrt{3}}{2}$
Option 4: $\frac{2}{\sqrt{3}}$
Question : In a right triangle for an acute angle $x$, if $\sin x=\frac{3}{7}$, then find the value of $\cos x$.
Option 1: $\frac{2}{7}$
Option 2: $\frac{3}{4}$
Option 3: $\frac{1}{\sqrt{3}}$
Option 4: $\frac{2\sqrt{10}}{7}$
Question : If $\tan A=\frac{2}{3}$, then find $\sin A$.
Option 1: $\frac{1}{3}$
Option 2: $\frac{2}{\sqrt{13}}$
Option 3: $\frac{2}{3}$
Option 4: $\frac{3}{\sqrt{13}}$
Question : If $\sin \theta+\cos \theta=\frac{\sqrt{3}-1}{2 \sqrt{2}}$, then what is the value of $\tan \theta+\cot \theta$?
Option 1: $8(\sqrt{3}-2)$
Option 2: $12(\sqrt{3}-2)$
Option 3: $12(\sqrt{3}+2)$
Option 4: $8(\sqrt{3}+2)$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile