Question : If $\mathrm{N}+\frac{1}{\mathrm{~N}}=\sqrt{3}$, then find the value of $\mathrm{N}^6+\frac{1}{\mathrm{~N}^6}+11$.
Option 1: –11
Option 2: –2
Option 3: 11
Option 4: 9
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 9
Solution : Given: $\mathrm{N}+\frac{1}{\mathrm{~N}}=\sqrt{3}$ Squaring both sides, we get: ⇒ $\mathrm{N}^2+2+\frac{1}{\mathrm{~N}^2}=3$ ⇒ $\mathrm{N}^2+\frac{1}{\mathrm{~N}^2}=1$ Now, cubing both sides, we get: ⇒ $(\mathrm{N}^2+\frac{1}{\mathrm{~N}^2})^3=1^3$ ⇒ $(\mathrm{N}^2)^3 + (\frac{1}{\mathrm{~N}^2})^3 + 3\times\mathrm{N}^2\times\frac{1}{\mathrm{~N}^2}(\mathrm{N}^2+\frac{1}{\mathrm{~N}^2})=1$ ⇒ $ \mathrm{N}^6 + \frac{1}{\mathrm{~N}^6} + 3\times1=1$ ⇒ $\mathrm{N}^6+\frac{1}{\mathrm{~N}^6}=-2$ Adding 11 on both sides, we get, $\therefore\mathrm{N}^6+\frac{1}{\mathrm{~N}^6}+11=9$ Hence, the correct answer is 9.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : The sides of a triangle are 9 cm, 6 cm, and 5 cm. What is the value of the circumradius of this triangle?
Option 1: $\frac{9 \sqrt{2}}{2} \mathrm{~cm}$
Option 2: $\frac{9 \sqrt{3}}{5} \mathrm{~cm}$
Option 3: $\frac{9 \sqrt{3}}{4} \mathrm{~cm}$
Option 4: $\frac{27 \sqrt{2}}{8} \mathrm{~cm}$
Question : If $x=(\sqrt{6}-1)^{\frac{1}{3}}$, then the value of $\left(x-\frac{1}{x}\right)^3+3\left(x-\frac{1}{x}\right)$ is:
Option 1: $\frac{2 \sqrt{6}-6}{5}$
Option 2: $\frac{4 \sqrt{6}-6}{5}$
Option 3: $\frac{4 \sqrt{6}-6}{3}$
Option 4: $\frac{4 \sqrt{3}-6}{5}$
Question : If $\sqrt{\frac{\mathrm{a}}{\mathrm{b}}}=\frac{8}{3}-\sqrt{\frac{\mathrm{b}}{\mathrm{a}}}$ and $a-b=10$, then the value of $ab$ is:
Option 1: $32 \frac{1}{7}$
Option 2: $32 \frac{3}{7}$
Option 3: $32 \frac{4}{7}$
Option 4: $32 \frac{2}{7}$
Question : If $x=5–\sqrt{21}$, the value of $\frac{\sqrt{x}}{\sqrt{32–2x}–\sqrt{21}}$ is:
Option 1: $\frac{1}{\sqrt2}(\sqrt{3}–\sqrt{7})$
Option 2: $\frac{1}{\sqrt2}(\sqrt{7}–\sqrt{3})$
Option 3: $\frac{1}{\sqrt2}(\sqrt{7}+\sqrt{3})$
Option 4: $\frac{1}{\sqrt2}(7–\sqrt{3})$
Question : If $\sec A=\frac{9}{4}$, then what is the value of $\cot A$?
Option 1: $\frac{4}{\sqrt{65}}$
Option 2: $\frac{9}{\sqrt{65}}$
Option 3: $\frac{\sqrt{65}}{9}$
Option 4: $\frac{\sqrt{65}}{4}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile