Question : If $\operatorname{tan} \theta=\frac{3}{4}$, then find the value of expression $\frac{1+\operatorname{sin} \theta}{1-\operatorname{sin} \theta}$.
Option 1: 4
Option 2: 3
Option 3: 8
Option 4: 5
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 4
Solution : Given: $\tan\theta=\frac{3}{4} =\frac{Perpendicular}{Base}$ Using Pythagoras' theorem, $AC=\sqrt{AB^2+BC^2}$ ⇒ $AC=\sqrt{3^2+4^2} =5$ $\sin\theta =\frac {\text {Perpendicular}}{\text {Hypotenuse} } = \frac{3}{5}$ Now, $\frac{1+\sin\theta}{1-\sin\theta} = \frac{1+\frac{3}{5}}{1-\frac{3}{5}} =\frac{8}{2}=4$ Hence, the correct answer is 4.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : If $\sin \theta+\cos \theta=\frac{1}{29}$, then find the value of $\frac{\operatorname{sin} \theta+\operatorname{cos} \theta}{\operatorname{sin} \theta-\operatorname{cos} \theta}$.
Option 1: $\frac{1}{41}$
Option 2: $\frac{43}{29}$
Option 3: $\frac{41}{29}$
Option 4: $\frac{1}{43}$
Question : If $\tan \theta=\frac{8}{15}$, then the value of $\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}$ is:
Option 1: $\frac{1}{5}$
Option 2: $\frac{3}{5}$
Option 3: $\frac{2}{5}$
Option 4: $\frac{4}{5}$
Question : If $6 \sec \theta=10$, then find the value of $\frac{5 \operatorname{cosec} \theta-3 \cot \theta}{4 \cos \theta+3 \sin \theta}$.
Option 1: $\frac{2}{3}$
Option 2: $\frac{3}{2}$
Option 3: $\frac{5}{6}$
Option 4: $\frac{6}{5}$
Question : If $\sin \theta-\cos \theta=\frac{1}{5}$, then find the value of $\sin \theta+\cos \theta$.
Option 1: $\frac{5}{7}$
Option 2: $\frac{7}{5}$
Option 3: $\frac{5}{3}$
Option 4: $\frac{3}{5}$
Question : If $\sin \theta-\cos \theta=0$, then what is the value of $\sin ^2 \theta+\tan ^2 \theta$ ?
Option 1: $\frac{1}{2}$
Option 2: $1$
Option 3: $\frac{4}{5}$
Option 4: $\frac{3}{2}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile