Question : If $\tan \alpha = 6$, then $\sec \alpha$ is equal to:
Option 1: $\sqrt{7}$
Option 2: $\sqrt{5}$
Option 3: $\sqrt{37}$
Option 4: $\sqrt{35}$
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\sqrt{37}$
Solution : Given: $\tan \alpha=6$ We know, $\sec^2 \alpha-\tan^2 \alpha=1$ ⇒ $\sec^2 \alpha-6^2=1$ ⇒ $\sec^2 \alpha=36+1$ $\therefore \sec \alpha=\sqrt{37}$ Hence, the correct answer is $\sqrt{37}$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $\tan (\alpha+\beta)=\sqrt{3}, \tan (\alpha-\beta)=1$ where $(\alpha+\beta)$ and $(\alpha-\beta)$ are acute angles, then what is $\tan$ $(6 \alpha) ?$
Option 1: $-1$
Option 2: $0$
Option 3: $1$
Option 4: $\sqrt{2}-1$
Question : If $\tan(\alpha -\beta)=1,\sec(\alpha +\beta)=\frac{2}{\sqrt{3}}$ and $\alpha ,\beta$ are positive, then the smallest value of $\alpha$ is:
Option 1: $142\frac{1}{2}°$
Option 2: $187\frac{1}{2}°$
Option 3: $7\frac{1}{2}°$
Option 4: $37\frac{1}{2}°$
Question : Using $\operatorname{cosec}(\alpha+\beta)=\frac{\sec \alpha \times \sec \beta \times \operatorname{cosec} \alpha \times \operatorname{cosec} \beta}{\sec \alpha \times \operatorname{cosec} \beta+\operatorname{cosec} \alpha \times \sec \beta}$, find the value of $\operatorname{cosec} 75°$.
Option 1: $\frac{\sqrt{6}+\sqrt{2}}{4}$
Option 2: $\frac{\sqrt{6}-\sqrt{2}}{4}$
Option 3: $\sqrt{6}-\sqrt{2}$
Option 4: $\sqrt{6}+\sqrt{2}$
Question : In a triangle $XYZ$ right-angled at $Y$, if $XY=2\sqrt{6}$ and $XZ-YZ=2$, then $\sec X+\tan X$ is:
Option 1: $\frac{1}{\sqrt{6}}$
Option 2: $\sqrt{6}$
Option 3: $2\sqrt{6}$
Option 4: $\frac{\sqrt{6}}{2}$
Question : If $\tan\alpha=2$, then the value of $\frac{\operatorname{cosec}^{2}\alpha-\sec^{2}\alpha}{\operatorname{cosec}^{2}\alpha+\sec^{2}\alpha}$ is:
Option 1: $-\frac{15}{9}$
Option 2: $-\frac{3}{5}$
Option 3: $\frac{3}{5}$
Option 4: $\frac{17}{5}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile