Question : if $x+\frac{1}{x}=2$, then the value of $x^4+\frac{1}{x^4}$=__________.
Option 1: 0
Option 2: 2
Option 3: –1
Option 4: 1
Correct Answer: 2
Solution : Given: $x+\frac{1}{x}=2$ Squaring both sides, we get ⇒ $(x+\frac{1}{x})^2=2^2$ ⇒ $x^2+\frac{1}{x^2}+2\times x\times\frac{1}{x}=4$ ⇒ $x^2+\frac{1}{x^2}=4-2$ ⇒ $x^2+\frac{1}{x^2}=2$ Again squaring both sides, we get: ⇒ $(x^2+\frac{1}{x^2})^2=2^2$ ⇒ $x^4+\frac{1}{x^4}+2\times x^2\times\frac{1}{x^2}=4$ ⇒ $x^4+\frac{1}{x^4}=4-2$ ⇒ $x^4+\frac{1}{x^4}=2$ Hence, the correct answer is 2.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : If $x=\frac{8ab}{a+b}(a\neq b),$ then the value of $\frac{x+4a}{x–4a}+\frac{x+4b}{x–4b}$ is:
Option 2: 1
Option 3: 2
Option 4: 4
Question : If $x^4+x^{-4}=47, x>0$, then what is the value of $x+\frac{1}{x}-2?$
Option 1: 1
Option 2: 0
Option 3: 5
Option 4: 3
Question : If $x^2+\frac{1}{x^2}=\frac{7}{4}$ for $x>0$; then what is the value of $x+\frac{1}{x}$?
Option 1: $2$
Option 2: $\frac{\sqrt{15}}{2}$
Option 3: $\sqrt{5}$
Option 4: $\sqrt{3}$
Question : If $(\frac{x}{y})^{5a-3}=(\frac{y}{x})^{17-3a}$, then what is the value of $a$?
Option 1: –7
Option 2: –5
Option 3: 0
Question : If $\frac{3x-1}{x}+\frac{5y-1}{y}+\frac{7z-1}{z}=0$, what is the value of $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}?$
Option 1: –3
Option 3: 15
Option 4: 21
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile