Question : If $\small c+\frac{1}{c}=3$, then the value of $\left (c-3 \right )^{7}+\frac{1}{c^{7}}$ is:
Option 1: 2
Option 2: 0
Option 3: 3
Option 4: 1
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 0
Solution : Given: $c+\frac{1}{c}=3$ $⇒ c-3 =-\frac{1}{c}$----------(1) Now, $\left (c-3 \right )^{7}+\frac{1}{c^{7}}$ Substituting the value of equation 1, we get, $= (-\frac{1}{c})^{7}+\frac{1}{c^{7}}$ $=-\frac{1}{c^{7}}+\frac{1}{c^{7}}$ $=0$ Hence, the correct answer is 0.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : If $\small x=a\left (b-c \right),\; y=b\left (c-a \right) ,\; z=c\left (a-b \right)$, then the value of $\left (\frac{x}{a} \right)^{3}+\left (\frac{y}{b} \right)^{3}+\left (\frac{z}{c} \right)^{3}$ is:
Option 1: $\frac{2xyz}{abc}$
Option 2: $\frac{xyz}{abc}$
Option 3: $0$
Option 4: $\frac{3xyz}{abc}$
Question : If $\left (2a-1 \right )^{2}+\left (4b-3 \right)^{2}+\left (4c+5 \right)^{2}=0$, then the value of $\frac{a^{3}+b^{3}+c^{3}-3abc}{a^{2}+b^{2}+c^{2}}$ is:
Option 1: $1\tfrac{3}{8}$
Option 2: $2\tfrac{3}{8}$
Option 3: $3\tfrac{3}{8}$
Option 4: $0$
Question : If $\left (a+b \right):\left (b+c \right):\left (c+a \right)= 6:7:8$ and $\left (a+b+c \right) = 14,$ then value of $c$ is:
Option 1: 6
Option 2: 7
Option 3: 8
Option 4: 14
Question : The value of $2 \frac{3}{5} \div\left[2 \frac{1}{3} \div\left\{4 \frac{1}{3}-\left(2 \frac{1}{2}+\frac{2}{3}\right)\right\}\right]$ is equal to:
Option 1: $1 \frac{3}{10}$
Option 2: $2 \frac{7}{10}$
Option 3: $2 \frac{3}{7}$
Option 4: $1 \frac{3}{7}$
Question : If $\left(3 y+\frac{3}{y}\right)=8$, then find the value of $\left(y^2+\frac{1}{y^2}\right)$.
Option 1: $5\frac{1}{9}$
Option 2: $4\frac{5}{6}$
Option 3: $7\frac{1}{9}$
Option 4: $9\frac{1}{9}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile