Question : If $\sin A-\cos A=\frac{\sqrt{3}-1}{2}$, then the value of $\sin A\cdot \cos A$ is:
Option 1: $\frac{\sqrt{3}}{2}$
Option 2: $\frac{3}{2}$
Option 3: $\frac{\sqrt{3}}{4}$
Option 4: $\frac{1}{\sqrt{3}}$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{\sqrt{3}}{4}$
Solution : Given that, $\sin A-\cos A=\frac{\sqrt3-1}{2}$ Squaring both sides, we get $\sin^2 A+\cos^2 A-2\sin A \cos A=\frac{1+3-2\sqrt3}{4}$ ⇒ $1-2\sin A \cos A=\frac{2-\sqrt3}{2}$ ⇒ $2\sin A\cos A=\frac{2-2+\sqrt3}{2}$ ⇒ $\sin A \cos A = \frac{\sqrt3}{4}$ Hence, the correct answer is $\frac{\sqrt3}{4}$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : If $\sin (x - y) = \frac{1}2$ and $\cos (x + y) = \frac{1}2$, then what is the value of $\sin x \cos x + 2\sin^2x + cos^3x \sec x$?
Option 1: $2$
Option 2: $\sqrt{2}+1$
Option 3: $1$
Option 4: $\frac{3}{4}$
Question : If $\theta$ is an acute angle and $\sin \theta \cos \theta=2 \cos ^3 \theta-\frac{1}{4} \cos \theta$, then the value of $\sin \theta$ is:
Option 1: $\frac{\sqrt{15}-1}{8}$
Option 2: $\frac{\sqrt{15}-1}{4}$
Option 3: $\frac{\sqrt{15}+1}{4}$
Option 4: $\frac{\sqrt{15}-1}{2}$
Question : If $\sin(A+B)=\sin A\cos B+\cos A \sin B$, then the value of $\sin75°$ is:
Option 1: $\frac{\sqrt{3}+1}{\sqrt{2}}$
Option 2:
$\frac{\sqrt{2}+1}{2\sqrt{2}}$
Option 3:
$\frac{\sqrt{3}+1}{2\sqrt{2}}$
Option 4:
$\frac{\sqrt{3}+1}{2}$
Question : If $(4 \sin \theta+5 \cos \theta)=3$, then the value of $(4 \cos \theta-5 \sin \theta)$ is:
Option 1: $3 \sqrt{2}$
Option 2: $4 \sqrt{2}$
Option 3: $2 \sqrt{3}$
Option 4: $2 \sqrt{5}$
Question : If $\sin \theta \cos \theta=\frac{1}{\sqrt{3}}$ then the value of $\left(\sin ^4 \theta+\cos ^4 \theta\right)$ is:
Option 1: $1$
Option 2: $\frac{5}{3}$
Option 3: $\frac{2}{3}$
Option 4: $\frac{1}{3}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile