Question : If $\cot A=\frac{12}{5}$, then the value of $(\sin A+\cos A) \times \operatorname{cosec} A$ is_____.
Option 1: $\frac{13}{5}$
Option 2: $\frac{17}{5}$
Option 3: $\frac{14}{5}$
Option 4: 1
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{17}{5}$
Solution : Given: $\cot A=\frac{12}{5}$ Now, $(\sin A+\cos A)×\operatorname{cosec}A$ $= (\sin A×\operatorname{cosec}A)+(\cos A×\operatorname{cosec}A)$ $= 1+\cot A$ $= (1+\frac{12}{5})$ $= \frac{17}{5}$ Hence, the correct answer is $\frac{17}{5}$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $\sin A=\frac{5}{13}$ and $7 \cot B=24$, then the value of $(\sec A \cos B)(\operatorname{cosec} B \tan A)$ is:
Option 1: $\frac{65}{42}$
Option 2: $\frac{13}{14}$
Option 3: $\frac{15}{13}$
Option 4: $\frac{13}{7}$
Question : If $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{3}{2}$, then the value of $\sin ^4 \theta-\cos ^4 \theta$ is:
Option 1: $\frac{5}{12}$
Option 2: $\frac{12}{13}$
Option 3: $\frac{11}{12}$
Option 4: $\frac{5}{13}$
Question : If $\operatorname{cosec} \theta+\cot \theta=p$, then the value of $\frac{p^2-1}{p^2+1}$ is:
Option 1: $\cos \theta$
Option 2: $\sin \theta$
Option 3: $\cot \theta$
Option 4: $\operatorname{cosec} \theta$
Question : If $\cot A=\frac{12}{5}$, then the value of $\sin A=?$
Option 1: $\frac{5}{13}$
Option 3: $\frac{5}{12}$
Option 4: $\frac{13}{12}$
Question : $\frac{1+\cos \theta-\sin ^2 \theta}{\sin \theta(1+\cos \theta)} \times \frac{\sqrt{\sec ^2 \theta+\operatorname{cosec}^2 \theta}}{\tan \theta+\cot \theta}, 0^{\circ}<\theta<90^{\circ}$, is equal to:
Option 1: $\sin \theta$
Option 2: $\cos \theta$
Option 3: $\operatorname{cosec} \theta$
Option 4: $\cot \theta$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile