Question : If $\cos \theta+\sec \theta=\sqrt{3}$, then the value of $\cos ^3 \theta+\sec ^3 \theta$ is:
Option 1: $0$
Option 2: $\frac{1}{\sqrt{3}}$
Option 3: $\sqrt{3}$
Option 4: $2 \sqrt{3}$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $0$
Solution : Given, $\cos \theta+\sec \theta=\sqrt{3}$ Cubing both sides, we get, $⇒\cos^3\theta + \sec^3\theta+3\cdot\cos\theta\cdot\sec\theta(\cos \theta+\sec \theta)=3\sqrt3$ ⇒ $\cos^3\theta+\sec^3\theta+3\times 1(\sqrt3)=3\sqrt3$ [$\because \cos\theta=\frac{1}{\sec\theta}$] ⇒ $\cos^3\theta+\sec^3\theta+3\sqrt3=3\sqrt3$ ⇒ $\cos^3\theta+\sec^3\theta=0$ Hence, the correct answer is $0$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : If $\sec \theta+\tan \theta=\frac{1}{\sqrt{3}}$, then the positive value of $\cot \theta+\cos \theta$ is:
Option 1: $\frac{3 \sqrt{3}}{2}$
Option 2: $\frac{\sqrt{3}}{2}$
Option 3: $\frac{2}{3 \sqrt{3}}$
Option 4: $\frac{2}{\sqrt{3}}$
Question : If $\theta$ is an acute angle and $\sin \theta \cos \theta=2 \cos ^3 \theta-\frac{1}{4} \cos \theta$, then the value of $\sin \theta$ is:
Option 1: $\frac{\sqrt{15}-1}{8}$
Option 2: $\frac{\sqrt{15}-1}{4}$
Option 3: $\frac{\sqrt{15}+1}{4}$
Option 4: $\frac{\sqrt{15}-1}{2}$
Question : If $\sqrt{2} \sec ^2 \theta-4 \sec \theta+2 \sqrt{2}=0$, then what is the value $\sin ^2 \theta+\tan ^2 \theta$?
Option 1: $\frac{1}{2}$
Option 2: $\frac{2}{3}$
Option 3: $\frac{5}{2}$
Option 4: $\frac{3}{2}$
Question : If $\cos \theta+\sin \theta=\sqrt{2}$, then what is the value of $\sec \theta \operatorname{cosec} \theta$ ?
Option 2: $1$
Option 3: $2$
Option 4: $0$
Question : If $(r\cos \theta -\sqrt{3})^{2}+(r\sin \theta -1)^{2}=0$, then the value of $\frac{r\tan \theta +\sec \theta}{r\sec \theta +\tan\theta}$ is equal to:
Option 1: $\frac{4}{5}$
Option 2:
$\frac{5}{4}$
Option 3:
$\frac{\sqrt{3}}{4}$
Option 4:
$\frac{\sqrt{5}}{4}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile