Question : If $\left(5 \sqrt{5} x^3-3 \sqrt{3} y^3\right) \div(\sqrt{5} x-\sqrt{3} y)=\left(A x^2+B y^2+C x y\right)$, then the value of $(3 A+B-\sqrt{15} C)$ is:
Option 1: 8
Option 2: 5
Option 3: 3
Option 4: 12
Correct Answer: 3
Solution : Given: $\left(5 \sqrt{5} x^3-3 \sqrt{3} y^3\right) \div(\sqrt{5} x-\sqrt{3} y)=\left(A x^2+B y^2+C x y\right)$ ⇒ $((\sqrt{5} x)^3-(\sqrt{3} y)^3) \div(\sqrt{5} x-\sqrt{3} y)=\left(A x^2+B y^2+C x y\right)$ ⇒ $((\sqrt{5} x-\sqrt{3} y)((\sqrt{5} x)^2+(\sqrt{3} y)^2+(\sqrt{5} x)×(\sqrt{3} y)) \div(\sqrt{5} x-\sqrt{3} y)=\left(A x^2+B y^2+C x y\right)$ ⇒ $(\sqrt{5} x)^2+(\sqrt{3} y)^2+(\sqrt{5} x)×(\sqrt{3} y)=\left(A x^2+B y^2+C x y\right)$ ⇒ $5x^2+3y^2+\sqrt{15} x y=\left(A x^2+B y^2+C x y\right)$ ⇒ $A = 5$, $B = 3$, and $C = \sqrt{15}$ So, $(3 A+B-\sqrt{15} C)$ = $3×5 + 3 - \sqrt{15}×\sqrt{15}$ = $15+3-15$ = $3$ Hence, the correct answer is 3.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : If $\left(5 \sqrt{5} x^3-3 \sqrt{3} y^3\right) \div(\sqrt{5} x-\sqrt{3} y)=\left(A x^2+B y^2+C x y\right)$, then what is the value of $(3 A-B-\sqrt{15} C)$?
Option 1: –3
Option 2: –5
Option 3: 8
Question : If $\left (\sqrt{5} \right)^{7}\div \left (\sqrt{5} \right)^{5}=5^{p},$ then the value of $p$ is:
Option 1: $5$
Option 2: $2$
Option 3: $\frac{3}{2}$
Option 4: $1$
Question : If $x^2-3 x+1=0$, then the value of $\left(x^4+\frac{1}{x^2}\right) \div\left(x^2+1\right)$ is:
Option 1: 5
Option 2: 6
Option 3: 9
Option 4: 7
Question : If $x^2-5 x+1=0$, then the value of $\left(x^4+\frac{1}{x^2}\right) \div\left(x^2+1\right)$ is:
Option 1: 21
Option 2: 22
Option 3: 25
Option 4: 24
Question : If $x^2+\frac{1}{x^2}=\frac{7}{4}$ for $x>0$, what is the value of $(x^3+\frac{1}{x^3})$?
Option 1: $\frac{3\sqrt{3}}{5}$
Option 2: $\frac{3\sqrt{15}}{5}$
Option 3: $\frac{3\sqrt{15}}{8}$
Option 4: $\frac{3\sqrt{5}}{8}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile